
!"#$%&'()

!"#

$%&'()*+,-./0,-12345678

$%&'()9:);&,<=.>?@A678

2022!6"18#
$%&'()*+,+&'-)AI*+./01



!"#$%&'()*+

AI!"#deep learning$%&'()*+#data-driven$

,-()./012

•34()5#6789, :;<=)
•>?()5#@=@ABCDEF$

GHIJKL

2



,-'./()0123'4

https://blogs.gartner.com/andrew_white/2021/07/24/by-2024-60-of-the-data-used-for-the-development-of-ai-and-analytics-projects-will-be-synthetically-generated/ 3



536789:GAN;
MN()O: random noise à GAN à data

Image source: https://medium.com/@jos.vandewolfshaar/semi-supervised-learning-with-gans-23255865d0a4

Goodfellow et al., Generative Adversarial Nets, NIPS 2014 4



P PGGANQR normal / AMDSTUV

Karras et al., Progressive growing of GANs for improved quality, stability, and variation, ICLR 2018

2019

BC

DEFGHIJ
KLMNOPQ

5



<=>!?@A23

Wang et al., Learning Two-Stream CNN for Multi-modal Age-related Macular Degeneration Categorization, IEEE J-BHI 2022 

RSTU

VWXYZDEFG[\]^_`HIJabKLMNcPQd

6



BC@DEGAN'FG4
WXYZ[\]W^_`abc

Wei et al.,  Learn to Segment Retinal Lesions and Beyond, ICPR 2020 

BC

efZgh(

7



BC@'HIJK

bde[ Class Activation Map (CAM)
•fgh_`ijklmn.op

Zhou et al., Learning deep features for discriminative localization, CVPR 2016

iNjk (a+b)*c lgm(a*c + b*c)

8



LM'NOPQ

qrstuvjwxySTz{.AMD|}#~Ybqr$

!"#$% !"#&'()*+,-

9



LM'NOPQ

()�5�����Y

• nopqrstu
• Iv829wxyJ1093zrJ1094{r|}~ (CFP)J1289{OCT��
• 4����Normal / dry AMD / wet AMD / PCV
• ��FA / ICGA[\ef�e�
• �r\�w��*+��J����h�K

2168-2194 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2022.3171523, IEEE Journal of
Biomedical and Health Informatics

WANG et al.: LEARNING TWO-STREAM CNN FOR MULTI-MODAL AGE-RELATED MACULAR DEGENERATION CATEGORIZATION 7

the CAM by swapping is mainly for diversifying the synthetic
data. Moreover, the synthetic data will be used exclusively
for pre-training MM-CNN. We expect to reduce the negative
effect of wrongly generated images by fine-tuning.

2) Loose Pairing for Pair-Level Data Augmentation: To ob-
tain a multi-modal training example, a natural strategy is to
strictly select a CFP image and an OCT image based on their
eye identities. Suppose we have two PCV eyes, eyea and eyeb,
in the training set. Each eye is associated with several images,
i.e., seta = {fa, oa1 , o

a
2 , o

a
3} and setb = {f b, ob1, o

b
2}, where

f and o stand for CFP and OCT images, respectively. There
are five strict pairs only, i.e., {(fa, oai ), (f

b, obj)}, i = 1, 2, 3
and j = 1, 2. In order to increase the number of multi-modal
instances for training, we propose to construct input pairs
based on labels instead of eyes. A color fundus image can
be paired with an OCT image as long as their class labels are
identical. We coin this method Loose Pairing. Consequently,
we obtain five loose pairs from seta and setb and ten multi-
modal instances in total. With loose pairing, the size of the
training set is substantially increased.

C. A Two-stage Training Strategy for Multi-Modal CNN
Given a relatively small real-world dataset, the joint use

of the proposed CAM-conditioned image synthesis and loose
pairing enables us to construct a large amount of multi-
modal training instances. However, directly combining the real
dataset and the generated dataset is problematic, as the former
will be easily outnumbered. In that regard, we train the MM-
CNN in two stages, i.e., pre-training and fine-tuning. In the
first stage, a CFP image and an OCT image are loosely paired,
with at least one of them sampled from the generated dataset.
Given the MM-CNN trained on these fake pairs, we perform
fine-tuning in the second stage, using the real dataset. Despite
the simplicity, such a two-stage training strategy is found to
be effective, as we will shortly show in Sec. IV-C.

For the backbone network, we start with ResNet-18 pre-
trained on ImageNet [36]. Instead of using the original input
size is 3⇥224⇥224, we use a larger input size of 3⇥448⇥448.
The kernel size of the GAP layer is accordingly adjusted, from
7 ⇥ 7 to 14 ⇥ 14, to ensure the dimensionality of the last
feature vector is invariant to this change. For both single-modal
and multi-modal CNNs, we use cross-entropy, a common loss
function for multi-class classification. SGD is used as the
optimizer, with momentum of 0.9, weight decay of 1e-4 and
batch size of 8. Per training process, a model is selected based
on its performance on a held-out validation set.

Contrast-limited adaptive histogram equalization (CLAHE)
[37] is used to enhance CFP images. For noise reduction in
OCT images, median filtering with a 3⇥ 3 kernel is applied.
Note that the proposed data augmentation methods are not
meant for replacing conventional data augmentation strategies.
In fact, the conventional strategies are needed to train better
single-modal CNNs for CAM-based image synthesis. The pro-
posed strategies and the conventional strategies shall be used
in combination. In advance to the proposed data augmentation,
we perform low-level common data augmentation operations
including random crop, flip, rotation, and random changes in
contrast, saturation and brightness on training images.

IV. EXPERIMENTS

A. Experimental Setup

Multi-modal dataset. We collected our experimental data
from the outpatient clinic of the Dept. of Ophthalmology,
Peking Union Medical College Hospital. The dataset initially
contains 1,094 CFP images from 1,093 eyes of 829 subjects,
acquired by a Topcon fundus camera. For 817 eyes, they are
associated with one to five OCT images. The OCT images
are central B-scans acquired by a Topcon OCT camera and a
Heidelberg OCT camera and manually selected by technicians.
We chose these cameras as they were the most frequently used
in our outpatient clinic, allowing us to collect a decent amount
of samples for this research. The condition of each eye is
jointly assessed by two ophthalmologists based on its CFP,
OCT, Fluorescein angiography (FA) or indocyanine green
angiography (ICGA), when applicable. Accordingly, each eye
is categorized into normal, dryAMD, PCV or wetAMD. Images
associated with a specific eye gets the same label.

Eventually, we obtain an expert-labeled multi-modal dataset
of 1,094 CFP and 1,289 OCT images. All these data are ap-
proved by the IRB of Peking Union Medical College Hospital.
We obey the principles of the Declaration of Helsinki.

TABLE II
DATA USED IN OUR EXPERIMENTS. DATA SPLIT IS MADE BASED ON

EYES. IN PARENTHESES ARE NUMBER OF EYES PER CLASS IN EACH
SPLIT. AS THE NUMBER OF OCT IMAGES VARIES PER EYE, OCT

IMAGES OF THE FOUR CLASSES ARE MORE UNBALANCED.

Class Training set Validation set Test set
CFP OCT CFP OCT CFP OCT

normal 155 (155) 156 (155) 20 (20) 20 (20) 20 (20) 20 (20)
dryAMD 67 ( 67) 33 ( 22) 20 (20) 35 (20) 20 (20) 38 (20)
PCV 259 (259) 289 (156) 20 (20) 44 (20) 20 (20) 47 (20)
wetAMD 453 (452) 531 (325) 20 (20) 38 (20) 20 (20) 38 (20)

In order to construct a class-balanced test set, for each class
we randomly sample 20 eyes from the eyes that have both
CFP and OCT images. This setting enables us to compare
an multi-modal input with its single-modal counterpart. The
setting also allows us to make a head-to-head comparison
between the two single modalities, namely CFP versus OCT.
In a similar manner, we build a multi-modal validation set for
model selection. We use the remainder for training. Data split
is based on eye identities, so images from a specific eye do
not appear in more than one subset.

Note that the relatively small amount of training samples
for dryAMD will adversely affect the stability of CFP image
based models. Its impact on OCT-based models is minor,
as dryAMD-related visual patterns such as drusen are easily
recognizable in OCT images. The effect of data shuffle on the
model performance is provided in the Appendix.

Performance metrics. For class-specific evaluation, we
report Sensitivity, Specificity and the F1 score, which is the
harmonic mean between Sensitivity and Specificity. For overall
performance evaluation, we report F1 averaged over the four
classes. Besides, we report Accuracy, the ratio of correctly
categorized instances, which are CFP or OCT images for
single-modal CNNs and CFP-OCT pairs for MM-CNNs. Due
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(a) Multi-modal input (b) Single-modal CAMs (c) Multi-modal CAMs

Fig. 4. CAM-based visualization of which part of input images
contribute to the final predictions made by single-modal / multi-
modal CNNs. Input images are shown in (a), with AMD-related regions
marked out by dotted ellipses. In (a), labels under each pair of images
are ground-truth, while labels in (b) and (c) are predictions made by
corresponding models. Correct and incorrect predictions are marked
out by Xand ⇥, respectively. For a better visualization, the images are
overlaid with single-modal CAMs (b) and multi-modal CAMs (c), whilst
the CFP images are converted to gray scale.

is more suited for AMD categorization. Next, we describe how
to convert Icam to a positive instance w.r.t. the given class.

From CAMs to synthesized images. Different from a
classical GAN that has one generator and one discriminator,
pix2pixHD consists of a main generator Gm and an auxiliary
generator Ga that produce images at two different resolutions,
which are 3 ⇥ 448 ⇥ 448 and 3 ⇥ 224 ⇥ 224 in this work,
see Fig. 3(b). Accordingly, there are two fully convolutional
network based discriminators Dm and Da responsible for the
two resolutions. Note that we do not draw the discriminators
in Fig. 2(b) as they are used only in the training stage. A
new image is generated by Gm with assistance from Ga. In
our context, Icam is first up-sampled by bicubic interpolation
to two scales, i.e., 3 ⇥ 224 ⇥ 224 and 3 ⇥ 448 ⇥ 448. The
two enlarged CAMs are separately fed to Ga and Gm. As
illustrated in Fig. 3(b), information extracted by Ga is injected
into Gm by combing their feature maps by the matrix addition.
For each modality, we train a pix2pixHD model, see Section
IV-A for details of the training procedure.

We observe that the highest response region in the CAM

tends to indicate abnormal areas in the source image. Hence,
in order to synthesize diverse yet meaningful images, we ma-
nipulate Icam by moving around its highest response region.
Specifically, we localize such a region by a sliding-window
approach, with the window size empirically set to be 5 ⇥ 5.
The window that has the maximal response with respect to
the given class is selected. Then, the region is swapped with
a randomly chosen region of the same size. In this manner
we construct for the same source image a number of distinct
CAMs, which we term manipulated CAMs, to distinguish them
from the original CAM. Fig. 5 showcases some source images,
their original and manipulated CAMs, and synthesized images.

(a) Real CFP images, CAMs, and synthesized CFP images

(b) Real OCT images, CAMs, and synthesized OCT images

Fig. 5. Illustrations of images generated by the CAM-conditioned
image synthesis for (a) CFP and (b) OCT images. For better visualiza-
tion, for each source image we stack its three CAMs, i.e., CAMdry ,
CAMpcv and CAMwet to form an RGB image. The fact that domi-
nant colors are better observed in OCT images suggests this modality is
more suited for AMD categorization. A flipped CAM indicates horizontal
flip of an original CAM, while a manipulated CAM is obtained by moving
the highest response region. Best viewed in digit.

When dealing with a novel image, it is possible that the
CAM may mis-localize some AMD lesions and thus result in
a wrong CFP / OCT image. To ensure the credibility of CAM
visualization, our tactic here is to re-use the training images
that are already been seen by CFP-CNN / OCT-CNN in their
training stage. Such an “overfitting” produces good-quality
CAM in general. In fact, we observe that feeding a CAM to
pix2pixHD reconstructs its source image well. Manipulating
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tion, for each source image we stack its three CAMs, i.e., CAMdry ,
CAMpcv and CAMwet to form an RGB image. The fact that domi-
nant colors are better observed in OCT images suggests this modality is
more suited for AMD categorization. A flipped CAM indicates horizontal
flip of an original CAM, while a manipulated CAM is obtained by moving
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When dealing with a novel image, it is possible that the
CAM may mis-localize some AMD lesions and thus result in
a wrong CFP / OCT image. To ensure the credibility of CAM
visualization, our tactic here is to re-use the training images
that are already been seen by CFP-CNN / OCT-CNN in their
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(a) Two-stream CNN

(b) CAM-conditioned image synthesis (c) Two-stage training pipeline

Fig. 2. Proposed end-to-end solution for multi-modal AMD categorization. Given a pair of CFP and OCT images from a specific eye, our two-
stream CNN makes a four-class prediction concerning the probability of the eye being normal, dryAMD, PCV and wetAMD, respectively. Extending
class activation mapping (CAM) to the multi-modal scenario allows us to visualize contributions of each modality to final predictions. For effective
training, we introduce two data augmentation methods. The first method is to synthesize CFP / OCT images by pix2pixHD, a high-resolution image-
to-image translation network re-purposed in the new context. Given a 3 ⇥ 448 ⇥ 448 source image, we pre-train the corresponding single-modal
CNN to produce CAMs w.r.t each AMD class. The CAMs are stacked to form an three-channel image [CAMdry;CAMpcv;CAMwet] of
3⇥14⇥14, which is then fed into pix2pixHD for image synthesis. A fully convolutional network Ga is used as an auxiliary generator to generate a
3 ⇥ 224 ⇥ 224 image. With the help of Ga, another fully convolutional network Gm is then used as a main generator to generate a double-sized
image. Manipulating the CAMs results in multiple synthesized images. The second method pairs CFP and OCT images based their classes instead
of eye identities. A two-stage training is performed, where the two-stream CNN is first pre-trained on synthetic and loosely paired CFP and OCT
images, and then fine-tuned on real and loosely paired multi-modal data.

TABLE I
STATE-OF-THE-ART FOR AUTOMATED AMD CATEGORIZATION. THIS PAPER PROPOSES TWO-STREAM CNN FOR MULTI-MODAL AMD

CATEGORIZATION, AND DEVELOPS MULTI-MODAL DATA AUGMENTATION FOR EFFECTIVE TRAINING.

Modality Paper Categorization model Data augmentation

CFP
Burlina et al. [8], [15] OverFeat feature + linear SVM classifier unmentioned
Burlina et al. [9] AlexNet trained from scratch unmentioned

Grassmann et al. [10] Ensemble of AlexNet, GoogLeNet, Inception-V3,
VGG11, ResNet-101, and Inception-ResNet-V2 � crop, flip, rotation

OCT

Lee et al. [11] VGG16 trained from scratch unmentioned
Treder et al. [13] Fine-tuned Inception-V3 � flip
Karri et al. [12] Fine-tuned GoogLeNet unmentioned
Russakoff et al. [16] A customized CNN � rotation, additive noise

CFP + OCT Yoo et al. [14] VGG19 features + random forest classifier � translation, rotation, brightness change, additive noise

This work Two-Stream CNN
� crop, flip, rotation, changes in brightness / saturation / contrast
• CAM-conditioned image synthesis
• Loose pairing

combine multiple CNNs [10]. As for OCT-based methods, Lee
et al. [11] train a VGG16 model from scratch to classify OCT
images either as normal or as AMD. By contrast, Karri et
al. [12] and Treder et al. [13] train their CNNs by fine tuning.
Different from the above works, we exploit both CFP and OCT
images as multi-modal input.

Few attempt has been made for multi-modal AMD cate-
gorization. To the best of our knowledge, Yoo et al. [14]
make the first effort in this direction, where the authors
perform three-class categorization, i.e., normal, dryAMD and
wetAMD, given CFP and OCT images. Similar to [8], [15]
in the single-modal context, the authors follow the classical

16



_`1a23()1bcdefg=h4
vjwxyz{.AMD~Yb��

��()���� F1 (Sen. & Spe.) Accuracy 
� ()�� 0.872 0.804
Label-conditioned QR 0.887 (1.7%) 0.825 (2.6%)
CAM-conditioned QR 0.892 (2.3%) 0.846 (5.2%)
¡¢£i (MICCAI’19) 0.897 (2.9%) 0.837 (4.1%)
CAM-conditioned QR
¡¢£i (MICCAI’19)

0.914 (4.8%) 0.863 (7.3%)

17



_`2a23()1b&ijk_()4
vj¤xyz{.AMD~Yb��

xy ()bc F1 Accuracy 

OCT ��() 0.886 0.818
QR() 0.874 0.802

STUV
��() 0.774 0.717
QR() 0.414 0.433

18



lmno

QR()¥¦§��().8¨©ªBPj«¬AIxc.k��

QR()­9®�¥EF�¥Y¯B°±()O�²¯

wxy()QR³´8µ¶S·AI¸¹ºMN¦P

https://github.com/li-xirong/mmc-amd

19



pq

Q¦»¼
• $%(5&6*+789:;<=
• $%>?@4 (Vistel)

½¾v¿
• $%ABC+DEFGHIJK*LMNOPQRSTUVWXDYZ[ (No. 4202033)
• $%ABC+DEF-\]^_`abcEFGEdQRSefPgh*LijkMNOl
BCmnopqrst (No. 19L2062)

xirong@ruc.edu.cn


