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Figure 1: Top-1 video retrieved by different models, i.e. W2VV++ [19], SEA [20], CLIP [28], CLIP* (fine-tuned by this work),
CLIP4Clip [25] and our CLIP-bnl, which is CLIP re-trained with proposed negation learning. This paper presents the first
study on a learning based method for handling negation in text-to-video retrieval (nT2VR). Data source: MSR-VTT [32].

ABSTRACT
Negation is a common linguistic skill that allows human to express
what we do NOT want. Naturally, one might expect video retrieval
to support natural-language queries with negation, e.g., finding
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shots of kids sitting on the floor and not playing with a dog. How-
ever, the state-of-the-art deep learning based video retrieval models
lack such ability, as they are typically trained on video description
datasets such as MSR-VTT and VATEX that lack negated descrip-
tions. Their retrieved results basically ignore the negator in the
sample query, incorrectly returning videos showing kids playing
with dog. This paper presents the first study on learning to under-
stand negation in video retrieval and make contributions as follows.
By re-purposing two existing datasets (MSR-VTT and VATEX), we
propose a new evaluation protocol for video retrieval with negation.
We propose a learning based method for training a negation-aware
video retrieval model. The key idea is to first construct a soft nega-
tive caption for a specific training video by partially negating its
original caption, and then compute a bidirectionally constrained
loss on the triplet. This auxiliary loss is weightedly added to a stan-
dard retrieval loss. Experiments on the re-purposed benchmarks
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show that re-training the CLIP (Contrastive Language-Image Pre-
Training) model by the proposed method clearly improves its ability
to handle queries with negation. In addition, the model performance
on the original benchmarks is also improved.
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1 INTRODUCTION
This paper is targeted at text-to-video retrieval (T2VR), also known
as video retrieval by text. T2VR aims to let common users retrieve
the increasing amounts of unlabeled videos by textual queries. Due
to its high practical value, the topic has attracted much attention
recently [13, 19, 24, 26, 30, 31]. These dedicated research efforts
have been well paid off, with continuous performance improve-
ment reported on both public datasets [29, 32] and international
benchmark evaluations [1, 2]. It seems unquestionable that more
powerful T2VR models will be developed to help users find what
they want. The question is do the (current) models understand what
the users do not want?

Negation is an important and common linguistic skill for human
beings to express what we do not want. A query with negation
can be “finding shots of kids sitting on the floor and not playing
with the dog”. As exemplified in Fig. 1, a number of current models,
e.g.W2VV++ [19], CLIP [28] and CLIP4Clip [25], are actually not
good at answering this specific query. Recall that these models
are trained on video description datasets, such as MSVD [3], MSR-
VTT [32] and VATEX [29], which were originally developed for the
video captioning task. For that task, annotators tend to describe
what was present in the video content other than what was absent.
By a rule-based negation cue detection, we find that only 1.5%
of the MSR-VTT video descriptions contain negation cues such
as no, not, and without. . The lack of negated descriptions in the
training data has a clear consequence on the models. Their retrieved
results basically ignore the negator in the sample query, incorrectly
returning videos showing kids playing with the dog, see Fig. 1.

Towards addressing negation in T2VR (nT2VR), an initial at-
tempt has been made by Wu and Ngo [30]. The authors describe a
rule-based strategy to process queries with negation. In particular,
given a query such as beach not man, the strategy treats the query
as a logic expression of beach AND (NOT man). The boolean oper-
ation is practically implemented by subtracting a video’s relevance
score to man from its relevance score to beach. We consider their
study preliminary as they experimented with only five hand-crafted
queries. More importantly, the boolean operation is essentially a
post-processing trick. The underlying T2VR model remains un-
aware of the negation.

In this paper, we present a first study on learning to understand
negation in T2VR. Our major contributions are as follows:

• Due to the absence of related data and evaluation criteria,
we introduce a new evaluation protocol. In particular, we re-
purpose MSR-VTT and VATEX by automatically construct-
ing thousands of negated and composed queries from the
original descriptions. Such a re-purposing allows the pro-
tocol to support large-scale evaluation without the need of
extra manual labeling. By preserving the original test queries,
the new protocol can also be used to test how a negation-
aware model performs on the original benchmarks.

• We propose a learning based method for training a negation-
aware T2VR model. Specifically, given a training video, its
original description and a partially negated description, we
compute on the triplet a bidirectionally constrained loss.
Consequently, negation learning (NL) is realized with ease
by adding this auxiliary loss to a standard retrieval loss.

• Extensive experiments on the two re-purposed benchmarks
show that re-training the CLIP (Contrastive Language-Image
Pre-Training) model [28] by the proposed method clearly
improves the model’s ability to handle queries with negation.
In addition, its performance on the original benchmarks is
also improved. Data and code are available at GitHub1.

The remaining part is organized as follows. We discuss related
work in Section 2. The new evaluation protocol is described in
Section 3, followed by the NL method in Section 4 and experiments
in Section 5. Major conclusions are presented in Section 6.

2 RELATEDWORK
Progress on T2VR. Depending on whether visual / text encoders
used to extract raw features from videos / queries are frozen, we
divide current methods for T2VR into the following two groups,
i.e. feature re-learning methods [8, 19, 26, 31, 33] and end-to-end
methods [11, 15, 25].

A feature re-learning method typically has a two-stage working
pipeline. In the first stage, one or multiple pre-trained 2D/3D CNNs
are used to extract frame-level or segment-level features from the
video content, whilst pre-trained language models, e.g. word2vec
(w2v) or BERT, are adopted for extracting dense features from
the text. Consider the W2VV++ series [19, 20, 24] for instance.
The method represents queries by concatenating the output of
multiple existing text encoders. CE [23], MMT [12] and MDMMT
[8] exploit multiple visual features that capture motion, appearance,
face and OCR, respectively. We refer to [2] for more details about
the choice of the features. In the second stage, the pre-extracted
visual / textual features are fed into a cross-modal representation
learning network so that the re-learned features can be directly
used for cross-modal matching. The choice of the network varies,
raging from a simple feedforward network used byW2VV++, multi-
level encoding networks used by DualEncoding [7], DualTask [30],
HGR [4] and HANet [31], to more complicated graph auto-encoders
used by FCA-Net [13]. The capability of these methods to handle
negation is subject to their raw textual features. If these features
are initially not discriminative to negation, their ability to represent
negation is unlikely to be improved by feature re-learning.
1https://github.com/ruc-aimc-lab/nT2VR
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Thanks to the advent of CLIP (Contrastive Language-Image Pre-
Training) [28], end-to-end methods for T2VR have been developed
recently. Built on the top of CLIP, CLIP-FT [15], CLIP4Clip [25]
and CLIP2Video [11] have shown superior performance over the
feature re-learning methods on multiple T2V benchmark datasets
including MSR-VTT [32], MSVD [3] and VATEX [29]. However,
their ability to answer nT2VR is unknown so far.

Wu and Ngo [30] describe briefly a boolean operation to tackle
queries with negation. In that work, a total of five queries were
manually created, i.e. beach not man, face not woman, drinking not
wine or beer, flower not red or yellow, and two people kissing not bride
and groom. Per query, e.g. face not woman, its score to a given video
is computed as the video’s similarity to the positive subquery (face)
subtracted by its similarity to the negative subquery (woman). Note
that the above operation is essentially post-processing, leaving the
problem of negative learning untouched.

Earlier efforts have been made on exploiting negative feedback
for T2VR, yet all in an interactive search mode. For instance, Cooper
et al. [5] describe an interactive video retrieval system where a user
can manually label the currently retrieved video shots either as
positive or negative (a.k.a. non-relevant). The system then exploits
the negative shot set to implement negative reinforcement / feed-
back. As such, the user’s negative intent has to be specified after
the first-round search and indirectly via labeling specific shots as
negative. By contrast, this paper is targeted at automated search,
allowing a user to directly express what she or he does not want
in a natural-language query in the first place. Hence, the proposed
negation-aware video retrieval is conceptually novel and techni-
cally orthogonal to negative feedback.

Understanding Negation in Large-scale Language Model-
ing. Large-scale pre-trained language models (PLM), as exemplified
by BERT [6], have demonstrated impressive performance on varied
NLP tasks. However, recent works report that PLM’s comprehen-
sion over negation is not satisfying [9, 14, 17]. Kassner and Schütze
show by their experiments that the probability for PLM to generate
“Birds cannot fly” is nearly the same as “Birds can fly” [17]. Hos-
seini et al. [14] report that when filling the blank with negation,
e.g. “The macOS was not developed by ”, BERT answered with
“Apple” in spite of the negator. To improve negation understanding
of BERT, the authors propose to use an unlikelihood objective on
negated sentences. Targeted at NLP tasks, the above technique is
not directly applicable for addressing nT2VR.

3 PROPOSED EVALUATION PROTOCOL
Aswe have noted earlier, benchmark for evaluating nT2VR is nonex-
istent. We choose to re-purpose two public video-caption datasets,
i.e.MSR-VTT [32] and VATEX [29], commonly used in the T2VR
literature. This is achieved by (partially) negating original queries
and composing novel and controlled queries in Section 3.1. Evalu-
ation criteria suited for the re-purposed datasets are presented in
Section 3.2. All this provides a new evaluation protocol for compre-
hensively assessing an (existing) T2VR model’s ability to handle
original, negated, and composed queries.

3.1 New Query Construction
3.1.1 NegatedQuery Construction. In order to construct (partially)
negated queries from the original video captions, we use a simple
rule-based strategy as follows. Given a caption q, we first use the
NLTK2 part-of-speech (POS) tagging API to identity verbs (VERB)
and auxiliary verbs (AUX). Then, a negation cue is inserted right
before the identified verb, e.g. while [not] dancing with many other
people, or after the AUX, e.g. there is [not] a fight at a basketball
game, yielding a negated variant of the caption, denoted by q−. Due
to the richness of the video content, a caption typically contains
multiple verbs. In such cases, one of the verbs or AUX is randomly
chosen to be negated, making q− partially negated w.r.t. q. See the
appendix for more instances.

There also exists a relatively small amount of captions originally
having negation cues, e.g. a boy running is running without dress.
For these captions, we negate their original meaning by removing
the negation cues, e.g. a boy running is running [with] dress.

When using q− as a query, the video corresponding to q now
becomes negative, see Fig. 2(a). Hence, a T2VR model that can
handle negation shall rank the video lower. However, a downside
of the negated query is that we are unsure which other videos are
truly relevant w.r.t. the negated query. Evaluating on the negated
queries alone is thus insufficient. Next, we propose to compose
queries with negation that have reference videos available.

3.1.2 ComposedQuery Construction. For constructing composed
queries, we first extract two linguistic groups, i.e. subjects and verb
phrases (VP), from the captions. Instances of subjects are a man,
people and a car, while instances of VPs are take selfie, drive down a
road and play basketball. Algorithm 1 shows python-style pseudo
code for extracting pairs of subjects and VPs from an (unrestricted)
video caption.

Algorithm 1: Subject and verb phrase (VP) extraction by NLTK
chunk parsing
Input: A video caption q
Output: A list of (subject, VP) pairs s_vp_list

#Tag patterns for specific types of chunks
grammar = '''
NP: {<DT|JJ|NN.*>*<NN.*>} # A noun -phrase chunk
PP: {<IN|RP><NP >} # A prepositional -phrase chunk
VP: {<VB.*><NP|PP|CLAUSE >*} # A verb -phrase chunk
CLAUSE: {<NP><VP >} # A clause chunk
'''

chunk_parser = nltk.RegexpParser(grammar)
tokens = nltk.word_tokenize(q)
tagged_tokens = nltk.pos_tag(tokens)
chunked_text = chunk_parser.parse(tagged_tokens)

s_vp_list = []
for vp in chunked_text.VPs:

subject = find_subject(checked_text , vp)
s_vp_list.append ((subject , vp))

In order to ensure both linguistic and semantic soundness, our
composed queries consist of a subject followed by two VPs, one
used as positive, while the other used as negative. Given the above

2https://github.com/nltk/nltk
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Composed 
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A man plays the guitar and he doesn't 
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dancing with many other people

A man is  playing the guitar while 
dancing with many other people
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Original 
caption
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A car is being flipped over
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(a) Negated queries and videos known to be irrelevant

Composed 
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Relevant 
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he is taking selfie 

!

!

A man plays the guitar and he doesn't 
sit on stool

A man cuts vegetable and he doesn't 
boil water

Composed 
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Relevant 
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!

!

A man is walking in a forest and not 
leading a horse

(b) Composed queries and videos known to be relevant

Figure 2: Illustration of (a) negated and (b) composed queries
in the proposed evaluation protocol. Data source: MSR-VTT.

triplet, a novel query is produced by template-based sentence gen-
eration. For instance, given <man, take selfie, drive down a road>,
we have the following two queries: a man is taking selfie and he is
not driving down a road and a man is not driving down a road and
he is taking selfie. As illustrated in Fig. 3, in order to find reference
videos in a given training set, we use the positive VP to conduct
phrase-level text retrieval on the video captions to identify a set of
candidate positive videos. In order to exclude false positives, we
favor precision over recall. Therefore, we use each word from the
negative VP to perform word-level text retrieval to identity videos
that are positive w.r.t. the word and thus being possibly negative
w.r.t. the composed query. By a set-difference operation between
the positive video set and the negative set, matched videos are
found. It is possible that the operation may produce an empty set.
In this case, the composed query will be discarded. By doing so,
we effectively remove queries that describe scenes that are either
counter-fact or rarely occur in the real world.

3.1.3 Re-purposedDatasets. Weperformnegated / composed query
construction on MSR-VTT and VATEX. For MSR-VTT, we adopt
two data-split editions. One is provided by the dataset developers
[32], with 3k test videos, while the other is specified by Yu et al. [35]
with 1k test videos. The two editions are referred to as MSR-VTT3k
and MSR-VTT1k, respectively. For VATEX, we follow the data split3
by Chen et al. [4]. The amount of original, negated and composed
queries per test set is summarized in Table 1.

3The number of videos used in this work is slightly less than the official number,
as some videos were no longer available when downloading.

< subject, positive VP, negative VP>
< man, take selfie, drive down a road >

Template based 
Sentence Generation

a man is not driving
down a road and he 
is taking selfie 

Matched videos

Composed sentence

(man, drive  road)(man, take selfie)

Indexed by 
<subject, postiveVP> 

<subject, word in negative VP > 

Candidate positives Candidate negatives

   -

a man is taking 
a selfie 

a car is driving on 
the road and a man

is taking a selfie 
 

a man is traveling
in a car on a
main road 

   

a car is driving on 
the road and a man

is taking a selfie 
 

Figure 3: Key data flow of constructing a composed query
and its matched videos. Given a subject (man), a positive VP
(take selfie) and a negative VP (drive down a road), we use
template-based sentence generation to obtain a composed
query (a man is taking selfie and he is not driving down a
road). To find matched videos in the training data, we con-
duct phrase-level text retrieval on the video captions to iden-
tify a set of candidate positive videos and word-level text
retrieval to identity a set of candidate negative videos. The
matched videos are obtained by set difference.

Table 1: Public datasets re-purposed by this paper for evalu-
ating text-to-video retrieval (T2VR) with negation (nT2VR).

Dataset Test videos
Test queries

Original Negated Composed
MSR-VTT3k [32] 3,000 59,800 59,668 18,157
MSR-VTT1k [35] 1,000 1,000 923 3,697
VATEX [29] 1,398 13,980 7,339 8,394

For a quick quality assessment, we randomly sampled 300 com-
posed queries, and manually checked whether the matched videos
are truly relevant w.r.t. the queries. About 90% of the queries are
correctly associated with relevant videos. The composed queries
are of sufficient quality for reliable evaluation.

3.2 Evaluation Criteria
For the original test queries, we report the commonly used Recall
at Rank N (R@N , N = 1, 5, 10), i.e. the percentage of test queries
that have their answers successfully retrieved among the top-N
ranked videos. In addition, we report Mean Inverted Rank (MIR),
which reflects how the reference videos are positioned in the over-
all ranking list. The same metrics are used to evaluate a model’s
performance on the composed queries.

For each negated queryq−, we can trace back to its original query
q, and thus know that the video associated with q shall be negative
w.r.t. q−. Hence, the difference between the video’s rank w.r.t. q
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and that w.r.t. q− reflects a model’s sensitivity to the introduced
negation. In that regard, we report ∆R@N , computed as

∆R@N (q−) = R@N (q) − R@N (q−). (1)

In a similar manner we compute ∆MIR.
Ideally, a model more sensitive to negation shall produce larger

values regarding both ∆R@N and ∆MIR. However, using the ∆
metrics alone is insufficient. Consider, for instance, a trivial solution
that simply reverses the ranking list. Larger ∆R or ∆MIR shall
not be interpreted as better retrieval performance. Therefore, the
performance on the composed query set shall be treated as primary,
while the performance on the negated query set is secondary.

4 PROPOSED LEARNING-BASED METHOD
In order to make our paper more self-contained, we first present
some preliminaries concerning current deep learning based T2VR
methods in Section 4.1. How to handle negation in a learning-based
manner is depicted in Section 4.2.

4.1 Preliminaries
At a high level, a deep learning based T2VR model M works as
follows. Given a textual queryq and a short videox , themodel uses a
text encoder, denoted byMt , and a visual encoder, denoted byMv ,
to project the query and the video into a d-dimensional common
space. We useMt (q) andMv (x) to indicate the resultant textual
and visual embedding vectors, respectively. A text-video similarity
s(x,q) is typically computed as the cosine similarity between the
two embeddings [7, 20]. Accordingly, T2VR on a video collection
is achieved by first scoring each video by s(x,q) and then sorting
them in descending order to acquire the top-ranked videos.

For model training, a set of manually captioned videos are re-
quired for jointly optimizing Mt and Mv so that a video x+ rel-
evant w.r.t. a given query shall have a larger similarity than an
irrelevant video x−, i.e. s(x+,q) > s(x−,q). Such a constraint is
commonly implemented by minimizing a triplet ranking loss ℓtr i
with hard-negative mining [7, 10, 13, 31, 36]. Given a caption q and
a video x+ it is describing, let x# be the hardest negative video, prac-
tically selected from a given mini-batch. The loss ℓtr i is calculated
as {

x# = arg max
x−

(s(x−,q) − s(x+,q))

ℓtr i (q, x
+, x#) = max(0,m0 + s(x#,q) − s(x+,q)),

(2)

wherem0 is a positive hyper-parameter controlling the margin.

4.2 Negation Learning
Given (x+,q) as paired video and caption, we can effectively aug-
ment the training data by using the negator described in Section
3.1.1 to generate a soft-negative caption q− w.r.t. the video x . In-
tuitively, we shall have sim(x+,q) > sim(x,q−). So a relatively
straightforward strategy to perform negation learning (NL) is to
compute another ℓtr i for the triplet < x+,q,q− >,

ℓtr i (x
+,q,q−) = max(0,m1 + s(x

+,q−) − s(x+,q)), (3)

wherem1 is a margin parameter. Adding this auxiliary loss to the
primary loss in Eq. 2, we obtain a joint loss ℓsnl (q, x+) as

ℓsnl (q, x
+) = ℓtr i (q, x

+, x#) + λ1ℓtr i (x
+,q,q−), (4)

with λ1 as aweight. ThemodelM is trained byminimizing ℓsnl (q, x+).
We term this strategy Simple Negation Learning (SNL).

We see from Eq. 3 that SNL treats q− as a common negative
caption w.r.t. the video. Recall that q− is derived from q by negating
one of its clauses. The unchanged part inherited from q, e.g. a man
is playing the guitar as illustrated in Fig. 2, remains semantically
relevant to the video content. This means the negative pair (x+,q−)
shall maintain certain similarity. In other words, when viewing x+
as a pivot point in the common space where q shall be more close
to x+, q− shall not be pushed too far away from x+. To that end,
while s(x+,q) shall be larger than s(x+,q−), there needs to be an
upper boundary on their difference, i.e. s(x+,q) − s(x+,q−) < m2,
withm1 < m2 < 2. We modify Eq. 3 to take the new constraint into
account, resulting in a bidirectionally constrained loss ℓbcl as

ℓbcl (x
+,q,q−) = max(0,m1 + s(x+,q−) − s(x+,q))+

max(0,−m2 − s(x+,q−) + s(x+,q)).
(5)

Similarly, given the original caption q, we expect that its cross-
modal similarity to its relevant video x+ shall be larger than its
uni-modal similarity to its negated variant q−. Meanwhile, the gap
between s(x+,q) and s(q,q−) shall be bounded. To that end, we
compute ℓbcl for the triplet < q, x+,q− > as

ℓbcl (q, x
+,q−) = max(0,m3 + s(q,q−) − s(q, x+))+

max(0,−m4 − s(q,q−) + s(q, x+)),
(6)

wherem3 andm4 are margin parameters with 0 < m3 < m4 < 2.
Note that ℓbcl (x+,q,q−) and ℓbcl (q, x+,q−) respectively use the

video x+ and the original caption q as a pivot in the common space
to exploit the negated information. By jointly minimizing the two
losses, the model M is trained to find a proper embedding for the
soft negative q− w.r.t. both the video x and the original caption q.
Accordingly, we term the improved strategy Bidirectional Negation
Learning (BNL), with the corresponding loss defined as

ℓbnl (q, x
+) = ℓtr i (q, x

+, x#) + λ2(ℓbcl (x
+,q,q−) + ℓbcl (q, x

+,q−)),
(7)

where λ2 is a small positive weight for balancing the primary and
the auxiliary losses.

4.3 Choice of the T2VR Model
We instantiate M with CLIP (ViT-B/32) [28]. Originally developed
for text-image matching, CLIP consists of a BERT for text embed-
ding and a Vision Transformer (ViT) for image embedding. To deal
with the video input, we use ViT to extract features per frame, and
aggregate the frame-level features to the video level by mean pool-
ing4 for subsequent cross-modal similarity learning and matching.
We use CLIP-snl and CLIP-bnl to indicate CLIP trained with ℓsnl
and ℓbnl , respectively.

Note that our NL methods are model-agnostic, so other end-to-
end alternatives to CLIP can in principle be used. We leave this for
future exploration.

5 EXPERIMENTS
5.1 Implementation Details
Hyperparameters used in this work are empirically set as follows
and fixed throughout our experiments, unless stated otherwise. The
4Mean pooling can be replaced by attention-based pooling for better performance [21].
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Table 2: Performance on the original, negated and composed query sets of the re-purposedMSR-VTT3k. The boolean operation
is not applicable to the original queries. Our CLIP-bnl tops the performance on the composed query set, while being sensitive
on the negated query set.

Models
Original (↑) Negated (↑) Composed (↑)

R1 R5 R10 MIR ∆R1 ∆R5 ∆R10 ∆MIR R1 R5 R10 MIR

W2VV++ [19] 11.4 29.9 40.7 0.208 0.3 0.4 0.3 0.003 6.6 23.0 33.6 0.154
SEA [20] 12.4 32.0 43.4 0.224 0.1 0.3 0.3 0.002 7.5 24.3 34.9 0.164
CLIP [28] 21.2 40.8 50.2 0.309 1.5 2.5 2.9 0.020 6.9 24.2 35.6 0.160
CLIP* (this paper) 27.7 53.0 64.2 0.398 0.5 1.1 1.1 0.008 11.4 33.3 46.2 0.225
CLIP4Clip [25] 28.9 54.4 65.1 0.410 0.8 1.5 1.2 0.010 11.3 33.3 45.6 0.222
Boolean operation:
W2VV++ – – – – 10.5 26.1 34.6 0.182 8.9 23.7 32.5 0.166
SEA – – – – 11.9 29.1 38.2 0.202 7.5 19.8 27.9 0.142
CLIP – – – – 18.8 37.5 46.2 0.278 5.9 16.7 23.9 0.118
CLIP* – – – – 25.3 47.1 56.1 0.353 13.5 33.7 45.5 0.236
CLIP4Clip – – – – 27.2 51.0 59.9 0.380 8.0 22.9 32.0 0.158
CLIP-bnl (this paper) 28.4 53.7 64.6 0.404 5.0 6.9 6.9 0.057 15.3 40.0 53.3 0.274

Table 3: Performance on the re-purposed MSR-VTT1k.

Models
Original (↑) Negated (↑) Composed (↑)

R1 R5 R10 MIR ∆R1 ∆R5 ∆R10 ∆MIR R1 R5 R10 MIR

W2VV++ 24.7 50.4 62.2 0.371 1.2 -0.5 0.8 0.007 10.7 32.9 46.0 0.218
SEA 27.2 54.3 65.8 0.398 -0.5 -0.9 -1.6 -0.007 12.2 34.6 47.0 0.232
CLIP 31.6 54.2 64.2 0.422 1.4 1.4 1.5 0.017 12.9 35.0 46.2 0.237
CLIP* 41.1 69.8 79.9 0.543 0.0 1.7 1.0 0.006 17.3 46.8 61.2 0.310
CLIP4Clip 43.9 70.6 80.2 0.560 1.2 -1.7 0.0 0.008 15.0 43.1 57.8 0.281
Boolean operation:
W2VV++ – – – – 21.3 40.9 51.2 0.310 11.2 27.9 36.9 0.196
SEA – – – – 23.9 47.6 54.1 0.344 10.9 26.6 35.6 0.188
CLIP – – – – 26.4 46.2 56.8 0.354 6.3 18.4 25.9 0.129
CLIP* – – – – 35.9 59.5 65.2 0.463 17.6 42.0 52.0 0.291
CLIP4Clip – – – – 40.0 61.9 69.1 0.495 8.5 25.6 34.9 0.171
CLIP-bnl 42.1 68.4 79.6 0.546 12.2 11.7 14.4 0.121 24.8 57.6 68.8 0.391

margin parameterm0 for the primary retrieval loss (Eq. 2) is set
to 0.2 according to VSE++ [10]. The lower and upper boundaries,
i.e.m1 andm2 for ℓbcl (x+,q,q−) (Eq. 5) are set to 0.1 and 0.6, while
m3 and m4 for ℓbcl (q, x+,q−) (Eq. 6) are set to 0.1 and 0.3. The
weight λ1 for SNL and λ2 for BNL are both set to 1e-3.

Our deep learning environment is PyTorch (1.7.0) [27] plus
NVIDIA GEFORCE RTX 3090 GPUs. We perform SGD based train-
ing, with RMSProp as the optimizer. The learning rate is initially
1e-6, decayed by a factor of 0.99 per epoch. We use an early stop-
ping strategy which stops training when no validation performance
increase is achieved in two consecutive epochs.

5.2 Evaluating Current T2VR Models
5.2.1 T2VR Model Selection. We choose the following models that
have PyTorch training code publicly available:

• W2VV++5, MM19 [19]: This model learns to project text and
video into a latent space, by using bag-of-words (bow), w2v and
GRU as its text encoders and ResNeXt-101 / ResNet-152 pre-trained
on ImageNet as its visual encoders.
• SEA6, TMM21 [20]: SEA exploits four text encoders (bow, w2v,
GRU, BERT) in a multi-space similarity learning framework. Its
visual encoders are the same as W2VV++.
• CLIP7, ICML21 [28]: A text-image matching model pre-trained
on 400 million image-text pairs collected from the Internet.
• CLIP*: We fine-tune the pre-trained CLIP on each of the three
training sets (Table 1), using the retrieval loss as expressed in Eq. 2.

5https://github.com/li-xirong/w2vvpp
6https://github.com/li-xirong/sea
7https://github.com/openai/CLIP

https://github.com/li-xirong/w2vvpp
https://github.com/li-xirong/sea
https://github.com/openai/CLIP
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Table 4: Performance on the re-purposed VATEX.

Models
Original (↑) Negated (↑) Composed (↑)

R1 R5 R10 MIR ∆R1 ∆R5 ∆R10 ∆MIR R1 R5 R10 MIR

W2VV++ 40.5 76.2 84.6 0.561 0.4 0.9 0.1 0.003 12.4 33.7 46.2 0.233
SEA 41.8 78.5 87.0 0.578 -0.3 1.0 0.3 0.000 12.5 34.3 47.5 0.238
CLIP 41.4 72.9 82.7 0.555 1.9 2.1 2.2 0.018 10.5 28.3 41.3 0.201
CLIP* 56.8 88.4 94.4 0.703 0.2 0.4 0.7 0.004 14.2 39.2 53.3 0.266
CLIP4Clip 61.5 88.8 94.0 0.734 0.8 0.3 0.6 0.006 14.3 38.4 51.5 0.263
Boolean operation:
W2VV++ – – – – 31.5 57.1 61.6 0.421 11.6 31.6 42.1 0.215
SEA – – – – 33.1 60.3 65.2 0.446 12.0 29.7 39.5 0.209
CLIP – – – – 32.5 57.2 64.5 0.431 5.0 18.0 25.6 0.116
CLIP* – – – – 45.7 69.6 71.9 0.554 14.1 34.4 45.1 0.243
CLIP4Clip – – – – 52.6 72.7 75.8 0.609 8.7 25.8 34.3 0.171
CLIP-bnl 57.6 88.3 94.0 0.708 14.0 11.7 8.6 0.125 16.6 39.9 53.9 0.284

• CLIP4Clip8, arxiv21 [25]: An end-to-end model which transfers
the knowledge of the CLIP model for T2VR.

Among them, W2VV++ and SEA are feature re-learning based,
while the others are all end-to-end.

5.2.2 Results. The performance of the selected T2VR models on
the re-purposed MSR-VTT3k, MSR-VTT1k and VATEX is shown
in Table 2, 3, and 4, respectively. The CLIP series (CLIP / CLIP* /
CLIP4Clip), due to their end-to-end learning ability, clearly out-
perform the two feature re-learning alternatives (W2VV++ / SEA)
on the original query set. However, the performance difference
between the CLIP series and feature re-learning on the negated
query set is much smaller, suggesting that they are insensitive to the
negation. Note that the pre-trained CLIP has the relatively largest
∆MIR of 0.020, see Row#3 in Table 2. Similar results can also be
observed from Table 3 and 4. Recall that different from CLIP, all the
other models have been re-trained on the video-description data.
These results are consistent with our earlier observation that the
video descriptions lack negation. Learning from such data makes
the models even more insensitive to negation in queries.

Our CLIP-bnl performs relatively lower than the SOTA model
(CLIP4Clip) on the original query set. Note that we have no inten-
tion to beat the SOTA. The inclusion of the SOTA in our experi-
ments is mainly to answer the question raised in the beginning,
i.e. , do the (current) models understand what the users do not want?
The experiments show that despite its leading performance on the
original queries, CLIP4Clip is unaware of negation in queries, as
demonstrated by its small and on the negated query set and its
lower R1/R5/R10/MIR scores on the composed query set. Consider
the MIR metric for instance, CLIP-bnl outperforms CLIP4Clip with
a clear margin: 0.222 → 0.274 on MSR-VTT3k (23.4% relative im-
provement), 0.281 → 0.391 on MSR-VTT1k (39.1%) and 0.263 →

0.284 on VATEX (8.0%). Such performance gaps are deemed to be
significant in the literature of T2VR.

8https://github.com/ArrowLuo/CLIP4Clip

5.3 NL versus Alternatives
5.3.1 Baselines. We implement the boolean operation [30] for each
of the T2VR models previously evaluated. The operation requires
decomposing a given query into a positive subquery and a negative
subquery. Handling a composed query is relatively straightforward,
as we know which part of the query is positive and which is nega-
tive. For a negated query, although the negation cue is known, the
negation scope followed by the cue is unknown. We resort to neg-
BERT [18] to automatically detect the negation scope. The detected
result is used as the negative subquery, while the remaining part of
the query is used as the positive subquery.

5.3.2 Results. As shown in Table 2, 3 and 4, the T2VR models
with the boolean operation produces much larger response on the
negated query set, when compared to their counterparts w/o the
operation. This indicates that the boolean operation makes the
models more sensitive to negation. However, the higher sensitivity
is obtained at the cost of the undesired performance drop on the
composed query set. Consider CLIP4Clip, the top performer on the
original query set for instance. With the boolean operation, its MIR
score on the composed query decreases: 0.222 → 0.158 on MSR-
VTT3k, 0.281→ 0.171 onMSR-VTT1k, and 0.263→ 0.171 on VATEX.
We conclude that the boolean operation is not effective for dealing
with the negation in composed queries. By contrast, our CLIP-
bnl, obtained by fine-tuning CLIP with the proposed bidirectional
negation learning, shows superior performance on the composed
query set. In addition, CLIP-bnl also exhibits higher sensitivity on
the negative set against its NL-free counterpart, i.e. CLIP* (∆MIR
0.057 versus 0.008, 0.121 versus 0.006, and 0.125 versus 0.004 on
MSR-VTT3k, MSRV-VTT1k, and VATEX, respectively).

5.4 Ablation Study on NL
In order to verify the necessity of BNL against SNL, we try with
varied implementation choices of the auxiliary loss. Per choice,
the related margin parameters are set based on the performance
on the held-out validation set. The ablation study is conducted on
MSR-VTT3k.

https://github.com/ArrowLuo/CLIP4Clip
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Table 5: The influence of the auxiliary loss. Each row is the performance of a specific CLIPmodel trained byweightedly adding
the corresponding auxiliary loss to the primary retrieval loss. Dataset: MSR-VTT3k.

Auxiliary loss
Original (↑) Negated (↑) Composed (↑)

R1 R5 R10 MIR ∆R1 ∆R5 ∆R10 ∆MIR R1 R5 R10 MIR

– (Row#4, Table 2) 27.7 53.0 64.2 0.398 0.5 1.1 1.1 0.008 11.4 33.3 46.2 0.225
Simple Negation Learning (SNL):
ℓtr i (x

+,q,q−) 28.8 54.2 65.1 0.408 1.8 2.5 2.5 0.021 12.9 35.1 48.1 0.241
ℓtr i (q, x

+,q−) 28.1 53.5 64.6 0.402 21.4 38.8 44.5 0.288 7.4 19.4 27.4 0.141
Bidirectional Negation Learning (BNL):
ℓbcl (x

+,q,q−) 27.5 52.7 63.8 0.395 2.7 3.7 3.6 0.030 14.6 38.9 51.5 0.264
ℓbcl (q, x

+,q−) 28.0 53.3 64.2 0.400 15.8 26.0 28.1 0.199 14.8 36.1 50.4 0.257
ℓbcl (x

+,q,q−) + ℓbcl (q, x
+,q−) 28.4 53.7 64.6 0.404 5.0 6.9 6.9 0.057 15.3 40.1 53.3 0.274
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Figure 4: Performance curves w.r.t. the upper boundary m4 in ℓbcl (q, x+,q−). The auxiliary loss, with its lower boundary m3
fixed as 0.1. Dataset: MSR-VTT3k.

5.4.1 SNL or BNL?. As Table 5 shows, the best choice for SNL is
ℓtr i (x

+,q,q−) (with the video as a pivot), scoring MIR of 0.408 on
the original query set and 0.241 on the composed query set. The best
choice of BNL is the joint use of ℓbcl (x+,q,q−) and ℓbcl (q, x+,q−),
scoring MIR of 0.404 on the original and 0.274 on the composed.
With both are better than the baseline w/o using any auxiliary loss,
BNL is better than SNL in terms of the overall performance.

Interestingly, when comparing Row#2 and Row#3 in Table 5,
using the original query q as the pivot for loss computation yields
a model that is clearly more sensitive to the negation than that
using the video x+ as the pivot (∆MIR 0.288 versus 0.021). A similar
phenomenon can also be observed in BNL (∆MIR 0.199 versus
0.030). Recall that the similarity between the query (video) pivot
and the soft negative q− is computed in a text-to-text (video-to-
text) manner. Hence, the results suggest that negation learning by
text-to-text matching easily pushes the soft negative far away and
adversely affects the learned common space. For this reason, we see
that adding the upper-boundary constraint is important, increasing
MIR on the composed set from 0.141 to 0.257 (Row#3 versus Row#5
in Table 5).

5.4.2 Influence of the Upper Boundary in ℓbcl (q, x
+,q−). Following

the above discussion about the upper boundarym4, we further study
its influence when using ℓbcl (q, x+,q−) as the auxiliary loss. As the
performance curves in Fig. 4 show, while its impact on the original
query set seems to be marginal, lowering its value obtains better

performance on the composed query set. The result again justifies
the necessity of BNL.

6 CONCLUSIONS
To conquer the novel task of negation in text-to-video retrieval
(nT2VR), we propose a new evaluation protocol together with a
learning based method for negation-aware T2V model training.
Our experiments on two re-purposed datasets, i.e.MSR-VTT and
VATEX, allow us to draw conclusions as follows. For the existing
T2VR models evaluated in this paper, i.e. W2VV++, SEA, CLIP and
CLIP4Clip, they are all found to be unaware of negation in queries.
Also, manipulating their retrieval results by boolean operations
does not work. Negation learning by text-to-text matching easily
pushes a soft negative description far away from its original descrip-
tion and adversely affects the learned common space. Bidirectional
negation learning is thus necessary. Re-training the CLIP model by
the proposed learning method clearly improves its ability to handle
queries with negation. In addition, its performance on the original
benchmarks is also improved. We believe this work opens up new
possibilities for multimedia retrieval.
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A APPENDICES
A.1 Rules for Query Construction
Negated Query Construction. Table 6 shows example rules to
generate negated queries.

Table 6: Rule-based negated query construction.

Original Query Identified Word (POS) Negated Query Sample
Some guys are driving a car
andmet an accident in a road met (VBD) Some guys are driving a car and

did not meet an accident in a road
A cartoon alien character finds
another character finds (VBZ) A cartoon alien character does not

find another character
A man is running around
and playing a guitar

running (VBG) A man is not running around
and playing a guitar

A man is running
around and playing a guitar is (AUX) A man isn’t running around

and playing a guitar
A father and son are playing
with each others’ hair are (AUX) A father and son aren’t

playing with each others’ hair
A live concert with a woman
as the lead singer with (ADP) A live concert without

a woman as the lead singer

Composed Query Generation. We use templates to generate
composed queries. According to whether the pronoun of subject
can be determined, we use two sets of templates. For example, given
< kids, do A, do B>, we first get the pronoun of ‘kids’, and then
randomly choose one of following queries:
• Kids do A and they don’t do B.
• Kids don’t do B and they do A.
• Kids doing A and not doing B.
• Kids not doing B and they doing A.
• Kids are doing A and not doing B.
• Kids are not doing B and they are doing A.

When the subject is in third-person singular and gender cannot
be determined, the pronoun of the subject is unknown. We then
use a set of slightly different templates. For example, given <A kid,
do A, do B>, we randomly choose one of the following queries:
• A kid does A and doesn’t do B.
• A kid doesn’t do B while does A.
• A kid doing A and not doing B.
• A kid not doing B while doing A.
• A kid is doing A and not doing B.
• A kid is not doing B while doing A.
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Table 7: Influence of the auxiliary-loss weight λ1 on SNL. Each row corresponds to a specific CLIPmodel trained by weightedly
adding the corresponding auxiliary loss to the primary retrieval loss. Dataset: MSR-VTT3k.

Auxiliary loss λ1
Original (↑) Negated (↑) Composed (↑)

R1 R5 R10 MIR ∆R1 ∆R5 ∆R10 ∆MIR R1 R5 R10 MIR

– (Row#4, Table 2) – 27.7 53.0 64.2 0.398 0.5 1.1 1.1 0.008 11.4 33.3 46.2 0.225

ℓtr i (x
+,q,q−)

0.001 28.8 54.2 65.1 0.408 1.8 2.5 2.5 0.021 12.9 35.1 48.1 0.241
0.01 28.5 53.8 64.7 0.405 11.3 16.7 17.5 0.135 10.5 30.6 44.0 0.209

ℓtr i (q, x
+,q−)

0.001 28.1 53.5 64.6 0.402 21.4 38.8 44.5 0.288 7.4 19.4 27.4 0.141
0.01 27.9 53.3 64.3 0.399 25.3 47.5 55.9 0.352 3.2 10.2 15.8 0.075

Table 8: Influence of the upper boundary (m2 /m4) and the auxiliary-loss weight λ2 on BNL. Dataset: MSR-VTT3k.

Auxiliary loss Upper
boundary λ2

Original (↑) Negated (↑) Composed (↑)
R1 R5 R10 MIR ∆R1 ∆R5 ∆R10 ∆MIR R1 R5 R10 MIR

– (Row#4, Table 2) – – 27.7 53.0 64.2 0.398 0.5 1.1 1.1 0.008 11.4 33.3 46.2 0.225

ℓbcl (x
+,q,q−)

m2
0.2 0.001 28.2 53.6 64.6 0.403 0.9 1.3 1.3 0.011 12.1 35.2 47.9 0.236
0.2 0.01 27.8 53.0 64.0 0.397 3.3 4.6 4.6 0.038 11.3 30.9 43.1 0.214
0.3 0.001 27.8 53.1 64.3 0.398 4.3 5.6 5.8 0.048 13.9 37.3 50.2 0.256
0.3 0.01 28.4 53.7 64.6 0.404 6.5 9.0 9.2 0.074 12.7 32.3 44.6 0.228
0.6 0.001 27.5 52.7 63.8 0.395 2.7 3.7 3.6 0.030 14.6 38.9 51.5 0.264
0.6 0.01 28.6 53.7 64.5 0.405 9.5 13.9 14.4 0.112 12.4 33.7 46.8 0.232
0.9 0.001 27.4 52.9 64.0 0.395 3.5 5.3 5.1 0.041 14.1 38.8 52.0 0.262
0.9 0.01 28.0 53.4 64.6 0.400 11.7 18.0 19.3 0.143 10.4 30.8 43.5 0.210

ℓbcl (q, x
+,q−)

m4
0.2 0.001 28.0 53.3 64.2 0.400 15.8 26.0 28.1 0.199 14.8 36.1 50.4 0.257
0.2 0.01 28.2 53.5 64.6 0.402 11.2 16.9 17.3 0.133 10.0 29.4 40.6 0.198
0.3 0.001 28.3 53.5 64.3 0.402 17.0 27.5 30.0 0.213 11.8 30.6 42.8 0.216
0.3 0.01 28.3 53.4 64.2 0.402 15.5 24.5 26.1 0.191 7.4 23.7 33.6 0.159
0.6 0.001 28.3 53.5 64.3 0.402 23.1 42.6 49.7 0.316 5.6 14.3 19.8 0.108
0.6 0.01 28.4 53.4 64.2 0.402 26.6 49.3 58.1 0.368 1.0 4.6 8.8 0.039
0.9 0.001 27.2 52.9 64.0 0.394 21.3 38.7 44.4 0.288 7.1 19.5 28.3 0.139
0.9 0.01 28.4 53.6 64.6 0.404 26.4 49.1 58.2 0.367 1.1 4.5 8.0 0.039

A.2 Hyper-parameter Evaluation
Influence of the auxiliary-loss weight λ1 on SNL. As Table 7
shows, setting the auxiliary-loss weight λ1 as 0.001 yields better
performance on both original and composed query set. Setting λ1
as 0.01 make model more sensitive to negation but at the cost of
undesired performance drop on the two other query sets.

Influence of the upper boundary (m2 /m4) and the auxiliary-
loss weight λ2 on BNL. As Table 8 shows, upper boundary and
auxiliary learning weight jointly influence negation learning task.
Generally, with looser upper boundary and larger auxiliary-loss
weight, model exhibits more sensitiveness to negation, but their per-
formance not necessarily increases on the composed and original
query sets. Their influence over original query set is smaller than
composed query set. Using ℓbcl (x+,q,q−) alone (with the video as
a pivot), top performance on composed query set is achieved by
settingm2 as 0.6 and λ2 as 0.001. Using ℓbcl (q, x+,q−) alone (with
the original query as a pivot), top performance on composed query
set is achieved by settingm4 as 0.2 and λ2 as 0.001. The result sug-
gests that setting auxiliary-loss weight as 0.001 is more appropriate,
meanwhile using the query pivot requires a tighter upper boundary
than using the video pivot.

A.3 NL for Text-to-Image Retrieval (T2IR)
To see to what extent can our findings be generalized to the image
domain, we reproduce our research on Flickr30k [34] andMS-COCO

[22], with results shown in Table 9 and 10. We simply adopt the
same hyper-parameters as we have used for T2VR, which could
be suboptimal for T2IR. Again, we observe that CLIP-bnl outper-
forms the baselines on the composed query set with a clear margin,
showing the viability of the proposed negation learning method.
Although our paper is targeted at T2VR, the proposed negative
learning method also works for T2IR with negation.

Table 9: Results on re-purposed Flickr30k (data split: [34]).

Models Original (↑) Negated (↑) Composed (↑)
R1 R5 R10 MIR ∆R1 ∆R5 ∆R10 ∆MIR R1 R5 R10 MIR

CLIP 59.0 84.6 91.0 0.705 2.7 2.0 1.2 0.024 18.9 41.2 56.0 0.303
CLIP* 75.1 93.3 96.1 0.832 1.2 0.4 0.2 0.009 23.4 50.9 65.4 0.365
CLIP (boolean) – – – – 52.3 69.4 71.5 0.594 8.5 20.1 28.3 0.150
CLIP*(boolean) – – – – 65.2 72.2 70.2 0.677 16.1 41.2 51.6 0.278
CLIP-bnl 74.8 93.1 96.2 0.829 18.5 10.7 6.8 0.149 26.4 55.7 70.8 0.398

Table 10: Results on re-purposedMS-COCO (data split: [16]).

Models Original Negated Composed
R1 R5 R10 MIR ∆R1 ∆R5 ∆R10 ∆MIR R1 R5 R10 MIR

CLIP 28.8 54.1 65.0 0.408 1.6 2.6 2.3 0.020 11.8 28.9 40.6 0.210
CLIP* 45.6 72.8 82.3 0.579 3.2 1.9 1.7 0.025 14.0 38.2 52.7 0.261
CLIP (boolean) – – – – 24.3 43.4 50.1 0.330 7.0 17.7 24.9 0.127
CLIP*(boolean) – – – – 39.5 57.1 61.6 0.467 12.8 32.0 42.5 0.222
CLIP-bnl 44.7 71.8 81.4 0.570 18.0 18.7 16.1 0.176 17.3 43.0 56.1 0.298
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