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Abstract
Ad-hoc Video Search (AVS) involves using a textual query to search
for multiple relevant videos in a large collection of unlabeled short
videos. The main challenge of AVS is the visual diversity of rele-
vant videos. A simple query such as “Find shots of a man and a
woman dancing together indoors” can span a multitude of environ-
ments, from brightly lit halls and shadowy bars to dance scenes
in black-and-white animations. It is therefore essential to retrieve
relevant videos as comprehensively as possible. Current solutions
for the AVS task primarily fuse multiple features into one or more
common spaces, yet overlook the need for diverse spaces. To fully
exploit the expressive capability of individual features, we propose
LPD, short for Learning Partially Decorrelated common spaces.
LPD incorporates two key innovations: feature-specific common
space construction and the de-correlation loss. Specifically, LPD
learns a separate common space for each video and text feature,
and employs de-correlation loss to diversify the ordering of nega-
tive samples across different spaces. To enhance the consistency of
multi-space convergence, we designed an entropy-based fair multi-
space triplet ranking loss. Extensive experiments on the TRECVID
AVS benchmarks (2016-2023) justify the effectiveness of LPD. More-
over, diversity visualizations of LPD’s spaces highlight its ability to
enhance result diversity.
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1 Introduction
Ad-hoc video search (AVS), or zero-example video retrieval, involves
identifying multiple relevant videos through text-based queries
without visual references. Since 2016, the annual TRECVID (TV)
evaluation has been a benchmark for measuring progress on the
AVS task [1]. Each team is asked to develop a video retrieval system
that retrieves the top 1,000 items for each test query from a large
collection of unlabeled short videos. The organizers then annotate
the items submitted by all teams and announce the scores and
rankings. AVS is different from text-to-video matching (retrieval)
task, which seeks to identify the most semantically relevant video
clip from a candidate pool referring to the textual query [2–5].
AVS aims to retrieve all videos related to the textual query, which
may encompass a variety of scenarios [6–12]. The visualization
examples between these two tasks are illustrated in Fig. 1.

The AVS task is particularly challenging for two key reasons.
Firstly, it requires searching from an extremely large collection
of unlabeled short videos. The size of the test collection for AVS
TV 2016–2018 (IACC.3 dataset [1]) is 336k, which increases to one
million for TV 2019–2021 (V3C1 dataset [14]) and 1.5 million for
TV 2022–2023 (V3C2 dataset [11]). The second challenge is that
AVS task not only aims to accurately locate videos that match the
query, but also comprehensively retrieve relevant videos across all
possible scenes. The complexity is heightened by the potential vari-
ability in the relevant video content, including scenes set in broad
daylight, during the night, or even within animated environments.
As shown in Fig. 1, a simple query like “Find shots of a man and a
woman dancing together indoors” could span a multitude of envi-
ronments, from brightly lit halls and shadowy bars to dance scenes
within black and white animations, which highlight the assessment
challenges outlined in annual TRECVID reports [1, 6–12].

Currently, the end-to-end task-specific models based on CLIP
[15] are popular in text-to-video matching task [3, 4, 16–18]. How-
ever, given the considerable challenges posed by the large size of
video pools and the diversity of video scenes, the winning models
of AVS task are primarily based on deep learning models that ex-
tract diverse (off-the-shell) textual or video features, followed by
cross-modal training and matching [19–29]. We categorize them
into two groups based on the number of common spaces:

The first category is learning one common space with multiple
feature fusion, such as DE [19, 22, 30–32] and W2VV++ [19, 31, 33],
fusing multiple features/models to create a stronger composite fea-
ture. However, learning within a singular common space could
present challenges in achieving diversity and comprehensive re-
call. The second category is centered around learning multiple
common spaces with different features, such as creating a concept
space and an embedding space [21, 22, 34], multi-level video-text
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a blond guy in a leather jacket plays a 
red guitar while a group of dancers 
dance behind him in a dance hall

one person is coming out from a room 
and closing its door and walking away

there is a black race car being serviced 
by a pit crew at the side of the race track

(a) Text-to-video matching. Data: MSR-VTT [13]

a man and a woman dancing together indoors

a door being opened by someone

a race car driver racing a car

(b) Ad-hoc video search. Data: TRECVID [8]

Figure 1: Illustrating two types of text-to-video retrieval tasks: (a) text-to-video matching (TVM) and (b) ad-hoc video search
(AVS). Compared to TVM which is to find a single match within thousands of videos, AVS aims to retrievemultiple relevant
videos from a million-scale collection. This paper is targeted at the latter.

matching [32, 35], aligning each text encoder with a unique com-
mon space [20, 24, 36], and generating multiple spaces that enable
cross-matching between various text and video features [27, 37].
Nonetheless, these methods lack a specific design for enhancing the
diversity of features across different spaces. Moreover, we believe
that each feature, whether text or video, needs to learn its dominant
space. And there is also a need for tailored training strategies that
not only ensure accuracy but also enhance the diversity of retrieval
results.

In this paper, we introduce a new network architecture, LPD
(Learning Partially-Decorrelated Common Spaces for Ad-hoc Video
Search). The overall framework is depicted in Fig. 2a. To fully exploit
the expressive capability of each feature within its corresponding
space, we design the architecture so that one end of each space
is connected to the corresponding feature, while the other end
integrates a weighted fusion of features from the corresponding
modality. To enhance the diversity of retrieval results across multi-
ple spaces while ensuring relevance, we introduce a de-correlation
loss that imposes constraints on the ordering of negative samples
differently in each space. To enhance the consistency of multi-space
convergence, we designed the entropy-based fair multi-space triplet
ranking loss. By integrating the relevance-enhancing triplet ranking
loss with the diversity-promoting de-correlation loss, LPD not only
maintains the relevance of the retrieval outcomes but also boosts

their diversity across various spaces. What’s more, de-correlation
loss is model-agnostic and can be applied to other multi-space meth-
ods as well. In summary, our main contributions are as follows:

• To improve result diversity in the AVS, we propose a novel
model LPD, which learns multiple feature-specific common
spaces, exploiting the expressive capability of each feature.

• We design the de-correlation loss to enhance diversity and
improve the multi-space triplet ranking loss by enforcing
fair space convergence.

• Experiments on the long-standing TRECVIDAVS benchmark
series (2016–2023) verify the effectiveness of LPD. Source
code is available at https://github.com/xxayt/LPD.

2 Related Work
2.1 Multi-feature Video Retrieval
Existing research on multi-feature video retrieval has developed
various common-space construction styles. Single-space methods
typically fuse multiple features into a robust composite feature for
matching within a common space. For example, W2VV++ [33] and
DE [30] integrate multiple features through vector concatenation,
while CE [38] employs a collaborative experts model to aggregate
features. Alternatively, some methods define several fixed common
spaces that are not feature-specific. DualTask [34] constructs an

https://github.com/xxayt/LPD
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embedding space and a concept space. LAFF [39] uses a multi-head
approach to establish multiple parallel common spaces. TMVM
[40] constructs a multi-embedding space by learning diverse vi-
sual prototypes for each video. Further, some methods construct
common spaces tailored to specific features. MMT [41] used a multi-
modal transformer to fuse multiple video features and create video-
feature specific spaces. SEA [36] aligned each text feature with a
unique common space. T×V [37] performed cross-matching for
each text-video feature pair, resulting in a quadratic number of
common spaces. Improved-ITV [42] employed generative captions
for multi-stage fusion but ignores feature complementarity and
space diversity. Our method differs by directly promoting diversity
through space-wise regularization during training. In this paper,
we propose LPD, which learns feature-specific spaces for all video
and text features, coupled with a de-correlation loss designed to
enhance the diversity across different spaces. The number of com-
mon spaces in LPD is equal to the number of features, making it
more efficient than T×V.

2.2 Ad-hoc Video Search
Ad-hoc video search (AVS), evaluated annually in TRECVID, has
been studied since 2016 [1]. In this task, given a textual topic descrip-
tion, the search system formulates a query and returns a ranked
list of relevant video shots. Early efforts matched concept represen-
tations extracted from both videos and queries using predefined
concept sets [43–49]. However, this required substantial manual
effort for concept design and annotation [50, 51].

With advancements in deep neural networks and the availabil-
ity of video captioning datasets, recent progress in ad-hoc video
search typically employs visual-text embedding models [30, 33–
37, 39, 52, 53]. Due to the need for comprehensive retrieval across
diverse scenes in the AVS, teams typically employ deep models to
extract multiple features and map them into one or more common
spaces to calculate cross-modal similarity [19–26, 28, 29, 31, 32].
Some methods learn a single common space by fusing multiple
features and enhance performance with additional training data
and advanced features [19, 22, 31, 32]. Others design interpretable
multi-space architectures for matching [21, 22], or construct multi-
ple text-specific spaces and perform cross-matching [20, 23, 24, 27].
More recently, multi-model late fusion has also been explored [25–
29, 54]. Beyond space construction, relevance-aware mining [55]
and support-set training [56] have been proposed to better lever-
age unlabeled positives. Separately, general-purpose diversification
methods such as MMR [57] and xQuAD [58] improve diversity in
retrieval but may sacrifice relevance. In this paper, we construct
diverse common spaces for multiple features and achieve a bet-
ter trade-off without post-processing, making our approach more
practical for AVS.

3 Proposed LPD Method
3.1 Overall Framework
We formalize an ad-hoc video search process as follows. We denote
a specific video clip as 𝑣 and a large collection of 𝑛 unlabeled video
clips as V = {𝑣1, . . . , 𝑣𝑛}. For an ad-hoc query in the form of a
sentence 𝑡 , let cms(𝑡, 𝑣) be a cross-modal similarity function that
measures the semantic relevance between the query and a specific

video. Accordingly, the search process boils down to sorting V in
descending order in terms of cms(𝑡, 𝑣) and returning the top-ranked
items for the given query. The computation of cms(𝑡, 𝑣) requires
proper embeddings of both 𝑡 and 𝑣 into a common cross-modal
space.

For features, suppose all textual queries are represented by a
set of 𝑘1 sentence-level features {𝑓𝑡,1, . . . , 𝑓𝑡,𝑘1 }, and the videos are
represented by a set of 𝑘2 video-level features, {𝑓𝑣,1, . . . , 𝑓𝑣,𝑘2 }.

We need to establish a common space for each text feature and
video feature, wherein we compute the similarity. As the features
are obtained by distinct extractors and thus incompatible, we shall
use a feature transformation layer to rectify the diverse features to
the same length embeddings. Then, we could get sentence-level em-
beddings {𝑒𝑡,1, . . . , 𝑒𝑡,𝑘1 }, and video-level embeddings, {𝑒𝑣,1, . . . , 𝑒𝑣,𝑘2 }.
Since each embedding independently dominates a common space,
the cross-modal similarity cms(𝑡, 𝑣) is the average similarity across
all common spaces, i.e.



𝑐𝑚𝑠𝑖 (𝑡, 𝑣) = 𝑐𝑜𝑠𝑖𝑛𝑒 [𝑒𝑡,𝑖 , Fusion𝑣,𝑖 (𝑒𝑣,1, . . . , 𝑒𝑣,𝑘2 )],
𝑐𝑚𝑠 𝑗 (𝑡, 𝑣) = 𝑐𝑜𝑠𝑖𝑛𝑒 [Fusion𝑡, 𝑗 (𝑒𝑡,1, . . . , 𝑒𝑡,𝑘1 ), 𝑒𝑣,𝑗 ],

𝑐𝑚𝑠 (𝑡, 𝑣) = 1
𝑘1 + 𝑘2


𝑘1∑︁
𝑖=1

𝑐𝑚𝑠𝑖 (𝑡, 𝑣) +
𝑘2∑︁
𝑗=1

𝑐𝑚𝑠 𝑗 (𝑡, 𝑣)
 .

(1)

Where cms𝑖 (𝑡, 𝑣) and cms𝑗 (𝑡, 𝑣) represent the similarities of the
common spaces dominated by the 𝑖𝑡ℎ text feature and the 𝑗𝑡ℎ video
feature, respectively. Thus, for each common space, one end is the
embedding obtained from an individual feature, and the other end
is the fusion of embeddings from another modality. Different spaces
aim to mine the information from various features, enhancing the
diversity of retrieval and recalling more relevant videos.

Next, we describe in detail of feature transform and fusion, fol-
lowed by the proposed de-correlation loss and fair multi-space
triplet ranking loss.

3.2 Feature Transform and Fusion
Without loss of generality, we are provided with a diverse set of 𝑘
different features {𝑓1, . . . , 𝑓𝑘 }, sized as 𝑑1, . . . , 𝑑𝑘 , respectively. As
the features are obtained by distinct extractors and thus incom-
patible, we shall use a feature transformation layer to rectify the
diverse features to be of the same length. To convert the 𝑖-th feature
to a new 𝑑-dimensional feature embedding, we use

𝑒𝑖 = 𝜙
(
Linear𝑑𝑖×𝑑 (𝑓𝑖 )

)
, (2)

where𝜙 is a nonlinear activation function. Following previous work
[33, 36, 39], we use tanh as 𝜙 .

Regarding the fusion method, as indicated in Eq. (1), each feature-
specific common space is designed to match a specific feature with
a dynamic weighted fusion of features from the opposite modality.
Consequently, we contemplate utilizing a weighted fusion to inte-
grate the features 𝑒1, . . . , 𝑒𝑘 from the other modality, where 𝑘 = 𝑘1
for text and 𝑘 = 𝑘2 for video

Fusion(𝑒1, . . . , 𝑒𝑘 ) =
𝑘∑︁
𝑖=1

𝑎𝑖𝑒𝑖 , (3)
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A

Video-specific common space

Textual features

A

Video features

Attentional feature fusion

A A A

A A A

Text-specific common space

𝑓௩,ଵ 𝑓௩,ଶ

…

𝑓௩,ଷ 𝑓௩,௞మ

𝑓௧,ଵ 𝑓௧,ଶ 𝑓௧,௞భ
…

(a) Construction of multiple feature-specific common spaces

𝑐𝑚𝑠௠(𝑡, 𝑣) 𝑐𝑚𝑠௡(𝑡, 𝑣)

|𝑑௣|

𝑣ଵ 𝑣ଶ 𝑣ଷ 𝑣ସ 𝑣ହ 𝑣ଵ 𝑣ଶ 𝑣ଷ 𝑣ସ 𝑣ହ

𝑡ଵ

𝑡ଶ

𝑡ଷ

𝑡ସ

𝑡ହ

𝑡ଵ

𝑡ଶ

𝑡ଷ

𝑡ସ

𝑡ହ

𝑣ଶ 𝑣ଷ 𝑣ସ 𝑣ହ

𝑡ଵ

𝑣ଶ 𝑣ଷ 𝑣ସ 𝑣ହ

𝑡ଵ

𝑣ଵ 𝑣ଷ 𝑣ସ 𝑣ହ

𝑡ଶ

𝑣ଵ 𝑣ଷ 𝑣ସ 𝑣ହ

𝑡ଶ

… …

(b) Calculating proposed de-correlation loss for spaces𝑚 and 𝑛

Figure 2: Proposed LPD. Each common space for video-text matching is feature-specific, with one end connected to its
corresponding feature and the other end as a weighted fusion of features from the other modality. The feature transform
layers associated with the same feature (indicated by the arrows originating from the feature in the figure) share parameters.
For the de-correlation loss in a mini-batch with three video-text pairs, the blue and green squares represent the text-video
similarity in spaces𝑚 and 𝑛, respectively. Different rows correspond to different text queries, and different columns represent
different videos. The goal is to improve the diversity of retrieval outcomes across various spaces by lowering Pearson correlation
coefficient for negative videos across these spaces.

with weights {𝑎1, . . . , 𝑎𝑘 } computed by a attention layer as:

{𝑎1, . . . , 𝑎𝑘 } = softmax (Linear𝑑×1 ({𝑒1, . . . , 𝑒𝑘 })) . (4)

3.3 De-correlation Loss
To enhance the complementarity between the multiple common
spaces while preserving their ability to retrieve positive samples,
we propose an auxiliary loss that minimizes the correlation be-
tween the rankings of negative samples derived from the individual
spaces. Since our method uses multi-embedding spaces, each space
produces a ranking, and the final retrieval result is obtained by
score-based fusion of these rankings, in Eq. (1). By minimizing
the correlation between individual rankings, we naturally promote
diversity in the final retrieval result, thereby enhancing its diversity.

As shown on Fig. 2b, for a specific space𝑚, the 𝑏 × 𝑏 video-text
similarity matrix is represented as cms𝑚 (𝑡, 𝑣). Accordingly, the 𝑖
th row cms𝑚 (𝑡𝑖 , 𝑣) contains one positive video-text sample pair
similarity cms𝑚 (𝑡𝑖 , 𝑣+) and 𝑏 − 1 negative video-text sample pair
similarities cms𝑚 (𝑡𝑖 , 𝑣−).

To apply the de-correlation loss, for each text in different spaces,
we apply a constraint to increase the dispersion of these rankings
among different spaces, thereby enhancing the diversity of retrieval
outcomes. For two specific spaces (indexed by𝑚 and 𝑛) from the

(𝑘1 + 𝑘2) available spaces, the de-correlation loss DcL is defined as:

DcL =
1
𝑏

𝑏∑︁
𝑖=1

��𝑑𝑝 (
cms𝑚 (𝑡𝑖 , 𝑣−) , cms𝑛 (𝑡𝑖 , 𝑣−)

) �� , (5)

where 𝑑𝑝 is the Pearson correlation coefficient, which is applied
between the ordered sets of negative samples across different spaces
for a given text. We aim to optimize the absolute value of 𝑑𝑝 to 0
because our goal is to enhance differences in retrieval outcomes
across different spaces, rather than making the retrieval outcomes
completely opposite with 𝑑𝑝 = −1.

To facilitate parallel processing of Eq. (5), we utilize a masking
method for matrix operations on the video-text similarity matri-
ces. Let 𝑀 be the similarity matrix for a specific space. The 𝑖-th
row𝑀𝑖 stores similarity scores of text 𝑡𝑖 to all videos in the batch.
The diagonal elements represent positive sample pairs, while the
off-diagonal elements represent negative sample pairs. In order to
mask out the positive pairs when computing the row-wise rank
correlation coefficient, we define a binary matrix 𝑍 , where 𝑍𝑖, 𝑗 = 0
for 𝑖 = 𝑗 and 𝑍𝑖, 𝑗 = 1 otherwise. Applying element-wise multiplica-
tion with 𝑍 on the similarity matrices w.r.t. space𝑚 and 𝑛, DcL can
be rewritten as:

DcL =
1
𝑏

𝑏∑︁
𝑖=1

��𝑑𝑝 (
(𝑀𝑚 ⊙ 𝑍 )𝑖 , (𝑀𝑛 ⊙ 𝑍 )𝑖

) �� . (6)
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This allows for direct matrix operations for efficient computation
of DcL and thus accelerates training.

3.4 Fair Multi-space Triplet Ranking Loss
During each training iteration, we sample amini-batch B containing
𝑏 video-text pairs {(𝑣𝑖 , 𝑡𝑖 ) | 𝑖 = 1, . . . , 𝑏} from the training dataset.
This sampling strategy ensures that each video is irrelevant to other
texts within the batch, and vice versa.

For a specific space 𝑠 , we use the improved triplet ranking loss
(ITRL) by Faghri et al. [59]. While originally proposed for image-
text matching, ITRL is now found to be effective for text-video
matching [30, 33, 36, 39, 60]. Unlike the classical triplet ranking loss
that selects negative training examples by random, ITRL considers
the negative that violates the ranking constraint the most (within
a mini-batch) and is thus deemed to be the most informative for
improving the model being trained. Given a training sentence 𝑡
with 𝑣+ as a video relevant w.r.t. 𝑡 and 𝑣− as irrelevant, we express
the ITRL of a specific space 𝑠 as{

𝑣−∗ = argmax𝑣−∈B
(
cms𝑠 (𝑡, 𝑣−) − cms𝑠

(
𝑡, 𝑣+

) )
,

ITRL𝑠 = max
(
0, 𝛼 + cms𝑠 (𝑡, 𝑣−∗) − cms𝑠

(
𝑡, 𝑣+

) )
,

(7)

where 𝛼 is a positive hyper-parameter concerning the margin.
However, applying ITRL to multiple spaces presents a challenge.

Due to the diversity across different spaces, convergence rates often
vary, and directly summing the ITRL from different spaces may
lead to overfitting in some spaces. This phenomenon arises because
different features, which dominate different spaces, exhibit consid-
erable variations in dimensions, representational capabilities for
different modal information, and update frequencies, leading to dis-
parate convergence speeds among spaces. If a space has converged,
subsequent training is likely to result in overfitting [61, 62].

Intuitively, spaces with slower convergence rates, wherein fea-
ture distribution updates less frequently, require more extensive
training. Inspired by the entropy of feature [63] and One-shot Su-
pernet [64], we propose a multi-space triplet ranking loss with
fair space convergence. It dynamically selects different spaces for
training based on the information entropy of features, promoting a
more balanced and effective training process across all spaces and
leading to more stable convergence. Next, we detail the method
for calculating space weights based on feature information entropy
and the process for computing an improved multi-space loss.

3.4.1 Feature Entropy based Common Space Weighting. To com-
pute the feature information entropy for space 𝑠 , we collect all its
features in the given batch and apply min-max normalization inde-
pendently to each dimension. This yields a set of 𝑁 = 𝑏 × 𝑑 values
in the range [0, 1]. These values are then quantized into 100 bins,
converting them into a 100-dimensional probability distribution 𝑃𝑠 .
The entropy ℎ𝑠 is computed as:

ℎ𝑠 = −
100∑︁
𝑗=1

𝑃𝑠,𝑗 log(𝑃𝑠,𝑗 + 𝜖), (8)

where 𝜖 is a small positive constant ensuring numerical stability.
Given the 𝑘1 + 𝑘2 distinct spaces, we obtain a space-wise entropy
vector 𝐻 = {ℎ1, ℎ2, . . . , ℎ𝑘1+𝑘2 }.

A space-wiseweight vector, denoted as𝑊 = {𝑤1,𝑤2, . . . ,𝑤𝑘1+𝑘2 },
is computed based on 𝐻 as:

𝑊 = softmax(tanh(𝐻 )) . (9)

3.4.2 Multi-space loss. Once the space weight vector 𝑊 is dy-
namically given per iteration, each space is either included for or
excluded from training, depending on whether its weight exceeds
a given threshold (which is 1

𝑘1+𝑘2 ). The final multi-space loss func-
tion, denoted as EF-MTRL (Entropy-based Fair Multi-space Triplet
Ranking Loss) is computed as:

EF-MTRL =

𝑘1+𝑘2∑︁
𝑠=1

[𝑤𝑠 >
1

𝑘1 + 𝑘2
] · ITRL𝑠 . (10)

3.5 Overall Loss
The overall loss function is simply the sum of DcL and EF-MTRL.
By integrating these two individual losses, our model is motivated
to not only maintain the relevance of the retrieval outcomes but
also to boost their diversity across various spaces. This balanced
approach tackles the dual challenge of ensuring both relevance and
diversity in AVS, leading to a more effective and encompassing
search performance.

4 Evaluation
4.1 Experimental Setup
4.1.1 Test data. We adopt the TRECVID evaluation [1], the de facto
international benchmark for AVS. Since the AVS 2024 data has not
been released, we conduct experiments on the TV16-23 benchmark
series, see Tab. 1.

Table 1: Test sets used by the TRECVID (TV) AVS benchmark
series. Frames are obtained by uniform sampling with a fixed
time interval of 0.5 seconds.

Test set Video clips Frames Test queries

IACC.3 [1] 335,944 3,845,221
TV16 30
TV17 30
TV18 30

V3C1 [8] 1,082,649 7,839,450
TV19 30
TV20 20
TV21 20

V3C2 [11] 1,425,443 6,082,291 TV22 30
TV23 20

4.1.2 Development data. For training, we adopt the 9K subset of
MSR-VTT [65]. Following [19, 31], we adopt the TV16 video-text
matching test set of 200 video-text pairs (TV16-VTT) as our valida-
tion set for model selection.

4.1.3 Performance metric. We follow the TRECVID protocol, re-
porting inferred Average Precision (infAP) [1].

4.1.4 Test of significance. We perform a randomization test to
check if the performance difference between two video retrieval
systems is statistically significant [66].
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Table 2: Video/text features used in our evaluation. Video-
level features are obtained by mean pooling over frames or
segments unless otherwise stated.

Feature Dim. Short description

Video features:

wsl 2,048 ResNeXt-101 pre-trained on 940 million public
images, fine-tuned on ImageNet1k [67].

clip-b32 512 CLIP (ViT-B/32) pre-trained on web-scale image-text
pairs by contrastive learning [15].

clip-l14 768 CLIP (ViT-L/14), with a larger vision transformer.

ircsn 2,048 irCSN-152 trained by weakly supervised learning on
IG-65M [68].

beit 2,048 BEiT pre-trained on full ImageNet and
fine-tune on 1k-class ImageNet [69].

blip 256 BLIP(ViT-B) pre-trained on 129M
image-text pairs [70].

Text features:
blip 256 Text transformer from BLIP(ViT-B).
clip-b32 512 Text transformer from CLIP(ViT-B/32).
clip-l14 768 Text transformer from CLIP(ViT-L/14).

4.1.5 Implementations. The networks have an output dimension
of 𝑑 = 512. The margin 𝛼 in Eq. (7) is empirically set to 0.2. Training
is performed using SGD with a mini-batch size of 128, utilizing
RMSProp as the optimizer. The initial learning rate is 10−4, reduced
by a factor of 0.99 after each epoch. We adopt mean Average Pre-
cision (mAP) for model selection: early stop occurs once there is
no improvement in mAP on the validation set for ten consecutive
epochs. We use six video features and three text features (Tab. 2).
All experiments are conducted with four 3090 GPUs.

4.2 Comparison with Baselines
4.2.1 Baselines. To ensure a fair and reproducible comparison, we
select baselines with the following three criteria: 1) open source,
2) bi-encoder style for million-scale video retrieval as AVS, and 3)
peer reviewed. As such, we obtain 15 baselines in four groups:
• Group I (zero-shot retrieval): Directly match the text embedding
with the average pooled embedding of all frames for CLIP and BLIP.
• Group II (CLIP-based end-to-end networks): CLIP [15], CLIP4Clip
[4], X-CLIP [3], TS2-Net [5], CLIP-VIP [16], DGL [71], and Teach-
CLIP [72].
• Group III (Multi-feature fusion, single space learning): DE [30]
and W2VV++ [33].
• Group IV (Multi-feature fusion, multi space learning): DualTask
[34], SEA [36], LAFF [39], and T×V [37].

4.2.2 Results. Tab. 3 presents a comprehensive comparison among
various models across three benchmark datasets, IACC.3, V3C1
and V3C2, evaluated over different years from TV16 to TV23. We
observe that models integrating multiple features generally surpass
those relying on a single feature CLIP/BLIP in performance. Even
the best-performing blip zero-shot retrieval method significantly
lags behind multi-feature approaches. This trend underscores the
advantage of leveraging diverse feature sets, which, in combination,

offer a richer representation of video and text, thereby enhancing
retrieval precision. Particularly noteworthy is the performance of
models classified under “Learning multiple common spaces for
multiple features” which includes DualTask, LAFF, SEA, T×V and
our proposed LPD. These models, by dedicating unique spaces
for individual features, facilitate a more subtle understanding and
utilization of each feature’s distinct characteristics.

Comparing LPD to other multi-space baselines in Tables 4 and 5,
we observe a significant improvement. This advancement can be
attributed to two key factors. Firstly, LPD is designed to train a dis-
tinct space for each feature, complemented by a dynamic weighted
fusion of features from the opposite modality. DualTask and LAFF
manually set multiple spaces, while SEA focuses on text features,
and T×V performs cross-matching between text and video features.
These methods do not fully leverage the potential of feature-specific
space optimization. Secondly, LPD employs a de-correlation loss
during training to constrain the ordering of negative samples across
different spaces. This enhancement foregrounds the distinctiveness
of each space, further elevating the retrieval performance.

4.3 Understanding LPD
4.3.1 Inter-space Divergence. In order to measure how each com-
mon space differs from another, we compute an inter-space similar-
ity as follows. Given 𝑆𝑖 and 𝑆 𝑗 as top-20 retrieved videos from the
𝑖-th space and the 𝑗-th spacew.r.t. the TV23 queries respectively, the
inter-space similarity is computed as the Intersection over Union
(IoU) between 𝑆𝑖 and 𝑆 𝑗 . The IoU heatmaps of LAFF, LPD w/o DcL,
and LPD are shown in Fig. 3.

For the LAFF model, using a multi-head approach to construct
nine parallel common spaces, results in a lack of clear distinction be-
tween each space. As shown in Fig. 3a, the high similarity between
different spaces, indicated by large green areas in the heatmap, sug-
gests that the LAFFmodel’s spaces lack diversity. Comparing Fig. 3b
with Fig. 3a, we observed a notable increase in the distinctiveness
among the spaces, highlighted by the overall shift to yellow in the
heatmap. This shift verifies that our feature-specific design success-
fully created diversity within the common spaces. Further, when
comparing Fig. 3c to Fig. 3b, we observed a significant decrease
in the IoU of various spaces (for example, the IoU between text
clip-14 and text blip decreased from 0.34 to 0.30), indicating the
effectiveness of our proposed de-correlation loss in increasing the
diversity among the common spaces.

4.3.2 Partial versus full de-correlation loss. As shown in Fig. 2b, we
only constrain negative examples. Here, we provide experimental
evidence to support this design choice. In Tab. 4, we compare dif-
ferent types of DcL settings. We observe that compared to the LPD
without de-correlation loss, LPD with full de-correlation loss shows
a slight decrease in performance (MEAN infAP 0.229 → 0.227),
whereas LPD (partial de-correlation loss) improves the MEAN in-
fAP to 0.241. This indicates that applying de-correlation loss to a
full list that includes positive examples consequently impairs re-
trieval performance. The reason is that applying de-correlation to
the Full ranking list would disrupt the correct ranking of the posi-
tive training samples, and consequently result in performance loss.
By constraining only the correlation of negative training examples,
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Table 3: Comparison with baselines. All the multi-feature methods (Group III and IV) use the same set of video / text features
(Tab. 2). LPD outperforms other methods significantly (p<0.05).

Method
IACC.3 V3C1 V3C2

MEAN
TV16 TV17 TV18 TV19 TV20 TV21 TV22 TV23

Zero-shot retrieval:
clip-b32 0.173 0.208 0.087 0.136 0.161 0.194 0.119 0.102 0.148
clip-l14 0.201 0.232 0.103 0.082 0.102 0.169 0.118 0.116 0.140
blip 0.196 0.217 0.121 0.159 0.203 0.223 0.144 0.157 0.178

CLIP-based end-to-end networks:
CLIP4Clip [4] 0.196 0.228 0.108 0.142 0.161 0.183 0.127 0.139 0.161
X-CLIP [3] 0.209 0.229 0.114 0.150 0.184 0.195 0.125 0.129 0.167
TS2-Net [5] 0.202 0.266 0.132 0.120 0.153 0.188 0.150 0.133 0.168
CLIP-VIP [16] 0.184 0.212 0.109 0.143 0.148 0.175 0.109 0.088 0.146
DGL [71] 0.194 0.224 0.121 0.139 0.136 0.159 0.110 0.111 0.149
TeachCLIP [72] 0.199 0.248 0.129 0.176 0.196 0.218 0.166 0.164 0.187

Multi-feature, single-space:
W2VV++ [33] 0.215 0.301 0.138 0.189 0.226 0.213 0.177 0.186 0.206
DE [30] 0.204 0.319 0.138 0.189 0.235 0.225 0.172 0.200 0.210

Multi-feature, multi-space:
DualTask [34] 0.209 0.332 0.144 0.192 0.240 0.224 0.178 0.203 0.215
LAFF [39] 0.222 0.287 0.142 0.192 0.225 0.237 0.175 0.183 0.208
SEA [36] 0.231 0.314 0.158 0.199 0.251 0.230 0.188 0.220 0.224
T × V [37] 0.240 0.313 0.159 0.211 0.243 0.260 0.198 0.200 0.228
LPD 0.245 0.327 0.169 0.218 0.287 0.269 0.221 0.221 0.245

(a) LAFF, inter-space IoU: 0.487 (b) LPD w/o DcL, inter-space IoU: 0.217 (c) LPD, inter-space IoU: 0.209

Figure 3: Visualizing inter-space similarities for LAFF, LPD w/o DcL, and LPD. Per model, we calculate the Intersection over
Union (IoU) of the top-20 retrieval results by the individual spaces. Lower IoU scores indicate larger inter-space diversity. Best
viewed in color.

the proposed de-correlation loss indirectly yet effectively strikes a
balance between search result diversity and relevance.

4.3.3 DcL improves baselinemodels. De-correlation loss is designed
to be model-agnostic, with its primary goal being to diversify the

ordering of negative samples across different common spaces. In
Tab. 5, we integrate DcL into three multi-space baselines: LAFF,
SEA, and T×V. The results reveal that incorporating de-correlation
loss into these models led to an approximate 3% improvement
in mean infAP scores. This improvement strongly indicates that
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Table 4: Ablation study. LPD (Partial De-correlation) achieves significant improvement (p< 0.05).

Setup IACC.3 V3C1 V3C2 MEAN
TV16 TV17 TV18 TV19 TV20 TV21 TV22 TV23

LPD (Partial DcL) 0.245 0.327 0.169 0.218 0.287 0.269 0.221 0.221 0.245
Partial DcL→ Full DcL 0.230 0.309 0.146 0.203 0.265 0.251 0.201 0.213 0.227
w/o DcL 0.235 0.321 0.150 0.207 0.262 0.261 0.199 0.197 0.229
w/o EF-MTRL 0.244 0.325 0.165 0.216 0.278 0.269 0.215 0.220 0.241

Table 5: Performance enhancement from de-correlation loss on multi-space baseline models. Adding DcL to individual models
consistently brings in significant improvement (p<0.05).

Model IACC.3 V3C1 V3C2 MEAN
TV16 TV17 TV18 TV19 TV20 TV21 TV22 TV23

LAFF 0.222 0.287 0.142 0.192 0.225 0.237 0.175 0.183 0.208
LAFF+DcL 0.229 0.296 0.139 0.198 0.247 0.230 0.183 0.194 0.215 (+3.4%↑)
SEA 0.231 0.314 0.158 0.199 0.251 0.230 0.188 0.220 0.224
SEA+DcL 0.229 0.337 0.157 0.200 0.258 0.249 0.200 0.209 0.230 (+2.7%↑)
T×V 0.240 0.313 0.159 0.211 0.243 0.260 0.198 0.200 0.228
T×V+DcL 0.241 0.319 0.159 0.212 0.259 0.266 0.207 0.207 0.234 (+2.6%↑)
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Figure 4: Changes in mAP on the validation set. The EF-MTRL
method enables faster convergence.

de-correlation loss is not only effective but also highly adaptable
across different model architectures. This adaptability confirms
de-correlation loss as a powerful tool for increasing the diversity
and accuracy of video retrieval systems in ad-hoc search tasks,
demonstrating its broad applicability and effectiveness.

4.3.4 The effect of EF-MTRL. Fig. 4 shows the changes in mAP on
the validation set, clearly indicating that the model with EF-MTRL
converges faster and more stably compared to the one without it.
As shown in Tab. 4, removing EF-MTRL (w/o EF-MTRL) and using the
standard triplet ranking loss causes a slight drop in infAP from 0.245
to 0.241. This suggests that enforcing fair convergence across spaces
enhances model effectiveness through more balanced learning and
optimization among diverse feature spaces.

We observe that different feature spaces converge at different
speeds during training, with some having a much larger impact on
the overall loss. Our method gradually balances these differences,

leading to more synchronized convergence. This suggests that EF-
MTRL acts as a regularizer by encouraging greater training stability
and preventing overfitting to any single feature space.

4.3.5 Complexity analysis. As shown in Tab. 6, compared to LAFF,
LPD does not increase the number of parameters or FLOPs.

Table 6: Complexity analysis ofmulti-feature, multi-space
methods. 𝐷: total dimension of input features. FLOPs are
estimated per video-text matching.

Method Trainable Params. FLOPs (M)

T×V 4 × 𝐷 × 𝑑 75.50
DualTask 𝐷 × 𝑑 + 11,147 × 𝑑 41.70
LAFF 𝐷 × 𝑑 + 9 × 𝑑 18.89
LPD 𝐷 × 𝑑 + 9 × 𝑑 18.89
SEA 𝐷 × 𝑑 18.87

5 Summary and Conclusions
We have developed LPD that enhances both relevance and diver-
sity for ad-hoc video search (AVS) at a million-video scale. LPD
learns diverse feature-specific common spaces and dynamically
fuses information across modalities. A de-correlation loss promotes
diversity in negative sample ranking, while an entropy-based multi-
space triplet loss ensures relevance. Evaluations on the TRECVID
AVS benchmarks (2016–2023) show that LPD outperforms a number
of competitive baselines, setting a new standard for diverse and
scalable video retrieval.

Acknowledgments
This work was supported by the National Natural Science Founda-
tion of China (No. 62172420).



Learning Partially-Decorrelated Common Spaces for Ad-hoc Video Search MM ’25, October 27–31, 2025, Dublin, Ireland.

References
[1] George Awad, Fiscus Jonathan, Joy David, Michel Martial, Smeaton Alan, Kraaij

Wessel, Quenot Georges, Eskevich Maria, Aly Robin, Ordelman Roeland, Jones
Gareth, Huet Benoit, and LarsonMartha. 2016. TRECVID 2016: Evaluating Video
Search, Video Event Detection, Localization, and Hyperlinking. In TRECVID.

[2] Chen Jiang, Hong Liu, Xuzheng Yu, QingWang, Yuan Cheng, Jia Xu, Zhongyi Liu,
Qingpei Guo, Wei Chu, Ming Yang, et al. 2023. Dual-Modal Attention-Enhanced
Text-Video Retrieval with Triplet Partial Margin Contrastive Learning. In ACM
MM.

[3] Yiwei Ma, Guohai Xu, Xiaoshuai Sun, Ming Yan, Ji Zhang, and Rongrong Ji. 2022.
X-CLIP: End-to-End Multi-grained Contrastive Learning for Video-Text Retrieval.
In ACM MM.

[4] Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei, Nan Duan, and Tianrui
Li. 2022. CLIP4Clip: An empirical study of CLIP for end to end video clip retrieval
and captioning. Neurocomputing 508 (2022), 293–304.

[5] Yuqi Liu, Pengfei Xiong, Luhui Xu, Shengming Cao, and Qin Jin. 2022. TS2-Net:
Token shift and selection transformer for text-video retrieval. In ECCV.

[6] George Awad, Asad Butt, Jonathan Fiscus, David Joy, Andrew Delgado, Willie
McClinton, Martial Michel, Alan Smeaton, Yvette Graham,Wessel Kraaij, Georges
Quenot, Maria Eskevich, Roeland Ordelman, Gareth Jones, and Benoit Huet. 2018.
Trecvid 2017: Evaluating ad-hoc and instance video search, events detection,
video captioning and hyperlinking. In TRECVID.

[7] George Awad, Asad Gov, Asad Butt, Keith Curtis, Yooyoung Lee, yooyoung@nist
Gov, Jonathan Fiscus, David Joy, Andrew Delgado, Alan Smeaton, Yvette Gra-
ham, Wessel Kraaij, Georges Quenot, Joao Magalhaes, and Saverio Blasi. 2018.
TRECVID 2018: Benchmarking Video Activity Detection, Video Captioning and
Matching, Video Storytelling Linking and Video Search. In TRECVID.

[8] George Awad, Asad Butt, Keith Curtis, Yooyoung Lee, Jonathan Fiscus, Godil
Afzal, Andrew Delgado, Zhang Jesse, Eliot Godard, Lukas Diduch, Alan F.
Smeaton, Yvette Graham, Wessel Kraaij, and Georges Quenot. 2019. TRECVID
2019: An evaluation campaign to benchmark Video Activity Detection, Video
Captioning and Matching, and Video Search and retrieval. In TRECVID.

[9] George Awad, Asad A Butt, Keith Curtis, Jonathan Fiscus, Afzal Godil, Yooyoung
Lee, Andrew Delgado, Jesse Zhang, Eliot Godard, Baptiste Chocot, et al. 2020.
TRECVID 2020: A comprehensive campaign for evaluating video retrieval tasks
across multiple application domains. In TRECVID.

[10] George Awad, Asad A Butt, Keith Curtis, Jonathan Fiscus, Afzal Godil, Yooyoung
Lee, Andrew Delgado, Jesse Zhang, Eliot Godard, Baptiste Chocot, et al. 2021.
Evaluating multiple video understanding and retrieval tasks at trecvid 2021. In
TRECVID.

[11] George Awad, Keith Curtis, Asad Butt, Jonathan Fiscus, Afzal Godil, Yooyoung
Lee, Andrew Delgado, Eliot Godard, Lukas Diduch, Jeffrey Liu, et al. 2022. An
overview on the evaluated video retrieval tasks at TRECVID 2022. In TRECVID.

[12] George Awad, Keith Curtis, Asad Butt, Jonathan Fiscus, Afzal Godil, Yooyoung
Lee, Eliot Godard, Lukas Diduch, Deepak Gupta, Dina Demner Fushman, Yvette
Graham, Georges Quénot, et al. 2023. TRECVID 2023 - A series of evaluation
tracks in video understanding. In TRECVID.

[13] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. 2016. MSR-VTT: A Large Video
Description Dataset for Bridging Video and Language. In CVPR.

[14] Fabian Berns, Luca Rossetto, Klaus Schoeffmann, Christian Beecks, and George
Awad. 2019. V3C1 Dataset: An Evaluation of Content Characteristics. In ICMR.

[15] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
2021. Learning transferable visual models from natural language supervision. In
ICML.

[16] Hongwei Xue, Yuchong Sun, Bei Liu, Jianlong Fu, Ruihua Song, Houqiang Li,
and Jiebo Luo. 2023. CLIP-ViP: Adapting Pre-trained Image-Text Model to Video-
Language Alignment. In ICLR.

[17] Wenhao Wu, Haipeng Luo, Bo Fang, Jingdong Wang, and Wanli Ouyang. 2023.
Cap4video: What can auxiliary captions do for text-video retrieval?. In CVPR.

[18] Peng Jin, Hao Li, Zesen Cheng, Kehan Li, Xiangyang Ji, Chang Liu, Li Yuan, and
Jie Chen. 2023. Diffusionret: Generative text-video retrieval with diffusion model.
In ICCV.

[19] Xirong Li, Jinde Ye, Chaoxi Xu, Shanjinwen Yun, Leimin Zhang, Xun Wang,
Rui Qian, and Jianfeng Dong. 2019. Renmin University of China and Zhejiang
Gongshang University at TRECVID 2019: Learn to Search and Describe Videos.
In TRECVID.

[20] Xirong Li, Fangming Zhou, and Aozhu Chen. 2020. Renmin University of China
at TRECVID 2020: Sentence Encoder Assembly for Ad-hoc Video Search. In
TRECVID.

[21] Jiaxin Wu, Phuong Anh Nguyen, and Chong-Wah Ngo. 2020. VIREO@ TRECVID
2020 Ad-hoc Video Search. In TRECVID.

[22] Jiaxin Wu, Phuong Anh Nguyen, and Chong-Wah Ngo. 2021. VIREO@ TRECVID
2021 ad-hoc video search. In TRECVID.

[23] Fangming Zhou, Yihui Shi, Changqiao Wu, Xiaofeng Guo, Haofan Wang, Jincan
Deng, and Debing Zhang. 2021. Kuaishou at TRECVID 2021: Two-stage Ranking
Strategy for Ad-hoc Video Search. In TRECVID.

[24] Xirong Li, Aozhu Chen, Fan Hu, Xinru Chen, Chengbo Dong, and Gang Yang.
2021. Renmin University of China at TRECVID 2021: Searching and Describing
Video. In TRECVID.

[25] Kazuya Ueki, Yuma Suzuki, Hiroki Takushima, Hideaki Okamoto, Hayato Tanoue,
and Takayuki Hori. 2022. Waseda meisei softbank at TRECVID 2022. In TRECVID.

[26] Xirong Li, Aozhu Chen, Ziyue Wang, Fan Hu, Kaibin Tian, Xinru Chen, and
Chengbo Dong. 2022. Renmin University of China at TRECVID 2022: Improving
Video Search by Feature Fusion and Negation Understanding. In TRECVID.

[27] Konstantinos Gkountakos, Damianos Galanopoulos, Despoina Touska, Konstanti-
nos Ioannidis, Stefanos Vrochidis, Vasileios Mezaris, and Ioannis Kompatsiaris.
2022. ITI-CERTH participation in ActEV and AVS tracks of TRECVID 2022. In
TRECVID.

[28] Kazuya Ueki, Yuma Suzuki, Hiroki Takushima, Haruki Sato, Takumi Takada,
Hideaki Okamoto, Hayato Tanoue, Takayuki Hori, and Aiswariya Manoj Kumar.
2023. Waseda Meisei SoftBank at TRECVID 2023. In TRECVID.

[29] Xirong Li, Fan Hu, Ruixiang Zhao, Ziyuan Wang, Jingyu Liu, Jiazhen Liu, Bangx-
iang Lan, Wenguan Kou, Yuhan Fu, and Zhanhui Kang. 2023. Renmin University
of China and Tencent at TRECVID 2023: Harnessing Pre-trained Models for
Ad-hoc Video Search. In TRECVID.

[30] Jianfeng Dong, Xirong Li, Chaoxi Xu, Shouling Ji, Yuan He, Gang Yang, and Xun
Wang. 2019. Dual encoding for zero-example video retrieval. In CVPR.

[31] Xirong Li, Jianfeng Dong, Chaoxi Xu, Jing Cao, Xun Wang, and Gang Yang. 2018.
Renmin University of China and Zhejiang Gongshang University at TRECVID
2018: Deep Cross-Modal Embeddings for Video-Text Retrieval. In TRECVID.

[32] Yida Zhao, Yuqing Song, Shizhe Chen, and Qin Jin. 2020. RUC_AIM3 at TRECVID
2020: Ad-hoc Video Search & Video to Text Description. In TRECVID.

[33] Xirong Li, Chaoxi Xu, Gang Yang, Zhineng Chen, and Jianfeng Dong. 2019.
W2VV++: Fully deep learning for ad-hoc video search. In ACM MM.

[34] Jiaxin Wu and Chong-Wah Ngo. 2020. Interpretable embedding for ad-hoc video
search. In ACM MM.

[35] Shizhe Chen, Yida Zhao, Qin Jin, and Qi Wu. 2020. Fine-Grained Video-Text
Retrieval With Hierarchical Graph Reasoning. In CVPR.

[36] Xirong Li, Fangming Zhou, Chaoxi Xu, Jiaqi Ji, and Gang Yang. 2021. SEA: Sen-
tence encoder assembly for video retrieval by textual queries. TMM 23 (2021),
4351–4362.

[37] Damianos Galanopoulos and Vasileios Mezaris. 2022. Are All Combinations
Equal? Combining Textual and Visual Features with Multiple Space Learning for
Text-Based Video Retrieval. In ECCV Workshops.

[38] Yang Liu, Samuel Albanie, Arsha Nagrani, and Andrew Zisserman. 2019. Use
What You Have: Video retrieval using representations from collaborative experts.
In BMVC.

[39] Fan Hu, Aozhu Chen, ZiyueWang, Fangming Zhou, Jianfeng Dong, and Xirong Li.
2022. Lightweight Attentional Feature Fusion: A New Baseline for Text-to-Video
Retrieval. In ECCV.

[40] Chengzhi Lin, Ancong Wu, Junwei Liang, Jun Zhang, Wenhang Ge, Wei-Shi
Zheng, and Chunhua Shen. 2022. Text-adaptive multiple visual prototype match-
ing for video-text retrieval. NeurIPS.

[41] Valentin Gabeur, Chen Sun, Karteek Alahari, and Cordelia Schmid. 2020. Multi-
modal transformer for video retrieval. In ECCV.

[42] Jiaxin Wu, Chong-Wah Ngo, and Wing-Kwong Chan. 2024. Improving Inter-
pretable Embeddings for Ad-hoc Video Search with Generative Captions and
Multi-word Concept Bank. In ICMR.

[43] Cees G. M. Snoek and Marcel Worring. 2009. Concept-Based Video Retrieval.
Foundations and Trends in Information Retrieval 2 (2009), 215–322.

[44] Milind Naphade, J.R. Smith, Jelena Tesic, S. Chang, Winston Hsu, Lyndon
Kennedy, Alexander Hauptmann, and Jon Curtis. 2006. Large-Scale Concept
Ontology for Multimedia. IEEE Transactions on Multimedia 13 (08 2006), 86–91.

[45] Yu-Gang Jiang, Jun Yang, Chong-WahNgo, and Alexander Hauptmann. 2010. Rep-
resentations of Keypoint-Based Semantic Concept Detection: A Comprehensive
Study. IEEE Transactions on Multimedia 12 (02 2010), 42–53.

[46] Cees G. M. Snoek, Marcel Worring, Jan C. van Gemert, Jan-Mark Geusebroek, and
Arnold W. M. Smeulders. 2006. The Challenge Problem for Automated Detection
of 101 Semantic Concepts in Multimedia. In ACM MM.

[47] Vinh-Tiep Nguyen, Duy-Dinh Le, Benjamin Renoust, Thanh Duc Ngo, Minh-Triet
Tran, Duc Anh Duong, and Shinichi Satoh. 2016. NII-HITACHI-UIT at TRECVID
2016 Ad-hoc Video Search: Enriching Semantic Features using Multiple Neural
Networks. In TRECVID.

[48] Kazuya Ueki, Yu Nakagome, Koji Hirakawa, Kotaro Kikuchi, Yoshihiko Hayashi,
Tetsuji Ogawa, and Tetsunori Kobayashi. 2018. Waseda Meisei at TRECVID
2018:Ad-hoc Video Search. In TRECVID.

[49] Po-Yao Huang, Junwei Liang, Vaibhav, Xiaojun Chang, and Alexander Haupt-
mann. 2018. Informedia@TRECVID 2018:Ad-hoc Video Search with Discrete
and Continuous Representations. In TRECVID.

[50] Phuong Anh Nguyen, Yi-Jie Lu, Hao Zhang, and Chong-Wah Ngo. 2018. En-
hanced VIREO KIS at VBS 2018. In MMM.

[51] Takayuki Ueki, Kazuya an Hori and Tetsunori Kobayashi. 2019.
Waseda_Meisei_SoftBank at TRECVID 2019: Ad-hoc Video Search. In
TRECVID.



MM ’25, October 27–31, 2025, Dublin, Ireland. Fan Hu, Zijie Xin, & Xirong Li

[52] AmirhosseinHabibian, ThomasMensink, and Cees G.M. Snoek. 2014. VideoStory:
A New Multimedia Embedding for Few-Example Recognition and Translation of
Events. In ACM MM.

[53] Fartash Faghri, David J. Fleet, Jamie Ryan Kiros, and Sanja Fidlere. 2018. VSE++:
Improving Visual-Semantic Embeddings with Hard Negatives. In BMVC.

[54] Jiangshan He, Ruizhe Li, Jiahao Guo, Hong Zhang, Mingxi Li, Zhengqian Wu,
Zhongyuan Wang, Bo Du, and Chao Liang. 2023. WHU-NERCMS at TRECVID
2023: Ad-hoc Video Search (AVS) and Deep Video Understanding (DVU) Tasks.
In TRECVID.

[55] Alex Falcon, Giuseppe Serra, and Oswald Lanz. 2024. Improving semantic video
retrieval models by training with a relevance-aware online mining strategy. CVUI
245 (2024), 104035.

[56] Mandela Patrick, Po-Yao Huang, Yuki Asano, Florian Metze, Alexander Haupt-
mann, Joao Henriques, and Andrea Vedaldi. 2021. Support-set bottlenecks for
video-text representation learning. In ICLR.

[57] Jaime G. Carbonell and Jade Goldstein. 1998. The Use of MMR, Diversity-Based
Reranking for Reordering Documents and Producing Summaries. In SIGIR.

[58] Rodrygo L.T. Santos. 2012. Explicit web search result diversification. SIGIR Forum
47 (2012), 67–68.

[59] Fartash Faghri, David J. Fleet, Jamie Ryan Kiros, and Sanja Fidler. 2018. VSE++:
Improving Visual-Semantic Embeddings with Hard Negatives. In BMVC.

[60] Niluthpol Chowdhury Mithun, Juncheng Li, Florian Metze, and Amit K. Roy-
Chowdhury. 2018. Learning Joint Embedding with Multimodal Cues for Cross-
Modal Video-Text Retrieval. In ICMR.

[61] Gareth James, Daniela Witten, Trevor Hastie, Robert Tibshirani, et al. 2013. An
introduction to statistical learning. Springer.

[62] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep
learning. Vol. 1. MIT press Cambridge.

[63] Xu Ma, Pengjie Wang, Hui Zhao, Shaoguo Liu, Chuhan Zhao, Wei Lin, Kuang-
Chih Lee, Jian Xu, and Bo Zheng. 2021. Towards a Better Tradeoff between
Effectiveness and Efficiency in Pre-Ranking: A Learnable Feature Selection based
Approach. In SIGIR.

[64] He Wei, Yuekui Yang, Haiyang Wu, Yangyang Tang, Meixi Liu, and Jianfeng Li.
2023. Automatic Feature Selection By One-Shot Neural Architecture Search In
Recommendation Systems. In WWW.

[65] Youngjae Yu, Jongseok Kim, and Gunhee Kim. 2018. A joint sequence fusion
model for video question answering and retrieval. In ECCV.

[66] Jianfeng Dong, Xirong Li, and Duanqing Xu. 2018. Cross-Media Similarity Eval-
uation for Web Image Retrieval in the Wild. TMM 20, 9 (2018), 2371–2384.

[67] Dhruv Mahajan, Ross B. Girshick, Vignesh Ramanathan, Kaiming He, Manohar
Paluri, Yixuan Li, Ashwin Bharambe, and Laurens van der Maaten. 2018. Explor-
ing the Limits of Weakly Supervised Pretraining. In ECCV.

[68] Deepti Ghadiyaram, Du Tran, and Dhruv Mahajan. 2019. Large-Scale Weakly-
Supervised Pre-training for Video Action Recognition. In CVPR.

[69] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. 2022. BEiT: BERT Pre-
Training of Image Transformers. In ICLR.

[70] Junnan Li, Dongxu Li, Caiming Xiong, and Steven C. H. Hoi. 2022. BLIP: Bootstrap-
ping Language-Image Pre-training for Unified Vision-Language Understanding
and Generation. In ICML.

[71] Xiangpeng Yang, Linchao Zhu, XiaohanWang, and Yi Yang. 2024. DGL: Dynamic
Global-Local Prompt Tuning for Text-Video Retrieval. In AAAI.

[72] Kaibin Tian, Ruixiang Zhao, Zijie Xin, Bangxiang Lan, and Xirong Li. 2024.
Holistic Features are almost Sufficient for Text-to-Video Retrieval. In CVPR.


	Abstract
	1 Introduction
	2 Related Work
	2.1 Multi-feature Video Retrieval
	2.2 Ad-hoc Video Search

	3 Proposed LPD Method
	3.1 Overall Framework
	3.2 Feature Transform and Fusion
	3.3 De-correlation Loss
	3.4 Fair Multi-space Triplet Ranking Loss
	3.5 Overall Loss

	4 Evaluation
	4.1 Experimental Setup
	4.2 Comparison with Baselines
	4.3 Understanding LPD

	5 Summary and Conclusions
	Acknowledgments
	References

